No, Melting Quarks Will Never Work As An Energy Source“In order…

No, Melting Quarks Will Never Work As An Energy Source

“In order to create a particle with a heavy quark (strange, charm, bottom, etc.) in it, you have to collide other particles together at extremely high energies: enough to make equal amounts of matter and antimatter. Assuming you then make the two baryons you need (two charmed or two bottomed baryons, for instance), you must then have them interact under the right conditions — fast and energetic, but not too fast or too energetic — to cause that fusion reaction. And then, at last, you get that ~3-4% energy gain out.

But it cost you over 100% to make these particles in the first place! They’re also incredibly unstable, meaning they’ll decay to lighter particles on incredibly short timescales: a nanosecond or less. And, finally, when they do decay, you get 100% of your energy back, in the form of new particles and their kinetic energies. In other words, you don’t get any net energy out; you simply get out what you put in, but in a lot of different, hard-to-harness ways.”

Nuclear fusion is often hailed as the future of energy, as it converts more mass into energy via Einstein’s E = mc^2 than any other reaction we’ve ever produced in large quantities. But even though the fusion of hydrogen into helium causes such a large energy release, it’s still less than 1% of the mass you begin with. On the other hand, a new set of simulations involving a recently discovered particle indicates that, by fusing charmed baryons with one another, you can produce a doubly-charmed baryon and get up to 4% of your mass converted into energy. While many are touting this as a potential game-changer, the reality is much more sobering. Nuclear fusion is promising not just for the large yield, but because its reactants are abundant and stable, because the energy outputted is easy to harness, and the reaction is controllable. “Melting quarks” offer none of these, and as such, will never work as an energy source.

Come get the science explaining why this new discovery is so interesting, but also why it isn’t going to deliver an energy revolution anytime soon!