Are Space And Time Quantized? Maybe Not, Says …

Are Space And Time Quantized? Maybe Not, Says Science

“Incredibly, there may actually be a way to test whether there is a smallest length scale or not. Three years before he died, physicist Jacob Bekenstein put forth a brilliant idea for an experiment where a single photon would pass through a crystal, causing it to move by a slight amount. Because photons can be tuned in energy (continuously) and crystals can be very massive compared to a photon’s momentum, it ought to be possible to detect whether the “steps” that the crystal moves in are discrete or continuous. With a low-enough energy photon, if space is quantized, the crystal would either move a single quantum step or not at all.”

When it comes to the Universe, everything that’s in it appears to be quantum. All the particles, radiation, and interactions we know of are quantized, and can be expressed in terms of discrete packets of energy. Not everything, however, goes in steps. Photons can take on any energy at all, not just a set of discrete values. Put an electron in a conducting band, and its position can take on a set of continuous (not discrete) values. And so then there’s the big question: what about space and time? Are they quantized? Are they discrete? Or might they be continuous, even if there’s a fundamental quantum theory of gravity.

Surprisingly, space and time don’t need to be discrete, but they might be! Here’s what the science has to say so far.