A Cosmic First: Ultra-High Energy Neutrinos Fo…

A Cosmic First: Ultra-High Energy Neutrinos Found, From Blazing Galaxies Across The Universe

“A new scientific field, that of high-energy neutrino astronomy, officially launches with this discovery. Neutrinos are no longer a by-product of other interactions, nor a cosmic curiosity that barely extends beyond our Solar System. Instead, we can use them as a fundamental probe of the Universe and of the basic laws of physics itself. One of the major goals in building IceCube was to identify the sources of high-energy cosmic neutrinos. With the identification of the blazar TXS 0506+056 as the source for both these neutrinos and of gamma rays, that’s one cosmic dream that’s at last been achieved.”

From all over the Universe, cosmic particles zip around, occasionally colliding with Earth. These high-energy cosmic rays collide with our atmosphere, and we see the results in a cascading shower of particles. At the same time, we’ve detected ultra-high-energy neutrinos at observatories like IceCube, which originate not in our atmosphere, but from the distant astrophysical source where they were produced. At long last, we’ve matched up these two signals and found a location for them: an ultra-distant blazar some 4 billion light years away. From our perspective, with a quasar jet pointed right at us, it’s one of the brightest objects in the Universe. And now, for the first time, we know at least one place where these particles originate.

It’s an incredible cosmic first, and you won’t want to miss all the details on how we found these high-energy neutrinos and what it means for our Universe!