Category: astronomy

The Two Scientific Ways We Can Improve Our Ima…

The Two Scientific Ways We Can Improve Our Images Of Event Horizons

“By properly equipping and calibrating each participating telescope, the resolution sharpens, replacing an individual telescope’s diameter with the array’s maximum separation distance. At the Event Horizon Telescope’s maximum baseline and wavelength capabilities, it will attain resolutions of ~15 μas: a 50% improvement over the first observations. Currently limited to 345 GHz, we could strive for higher radio frequencies like 1-to-1.6 THz, progressing our resolution to just ~3-to-5 μas. But the greatest enhancement would come from extending our radio telescope array into space.”

It’s absolutely incredible that we’ve got our first image of a black hole’s event horizon, and a monumental achievement for science. But like all scientists, opening the door to a new “first” only increases our drive to surpass what we’ve accomplished and improve our capabilities beyond anything we’ve achieved before. For an event horizon, that means higher resolutions and sharper images, and we have two scientific ways to get there: probing higher frequencies and extending the length of our baseline to beyond the limits of planet Earth.

Both of these are technologically possible, and will likely, over the coming years and decades, be how we push past our scientific limits. Come learn how.

The Two Scientific Ways We Can Improve Our Ima…

The Two Scientific Ways We Can Improve Our Images Of Event Horizons

“By properly equipping and calibrating each participating telescope, the resolution sharpens, replacing an individual telescope’s diameter with the array’s maximum separation distance. At the Event Horizon Telescope’s maximum baseline and wavelength capabilities, it will attain resolutions of ~15 μas: a 50% improvement over the first observations. Currently limited to 345 GHz, we could strive for higher radio frequencies like 1-to-1.6 THz, progressing our resolution to just ~3-to-5 μas. But the greatest enhancement would come from extending our radio telescope array into space.”

It’s absolutely incredible that we’ve got our first image of a black hole’s event horizon, and a monumental achievement for science. But like all scientists, opening the door to a new “first” only increases our drive to surpass what we’ve accomplished and improve our capabilities beyond anything we’ve achieved before. For an event horizon, that means higher resolutions and sharper images, and we have two scientific ways to get there: probing higher frequencies and extending the length of our baseline to beyond the limits of planet Earth.

Both of these are technologically possible, and will likely, over the coming years and decades, be how we push past our scientific limits. Come learn how.

Ask Ethan: How Does Very-Long-Baseline Interfe…

Ask Ethan: How Does Very-Long-Baseline Interferometry Allow Us To Image A Black Hole?

“[The Event Horizon Telescope] uses VLBI. So what is interferometry and how was it employed by [the Event Horizon Telescope]? Seems like it was a key ingredient in producing the image of M87 but I have no idea how or why. Care to elucidate?”

If it were easy to network radio telescopes together across the world, we’d have produced an image of a black hole’s event horizon long ago. Well, it’s not easy at all, but it is at least possible! The technique that enabled it is known as VLBI: very-long-baseline interferometry. But there are some critical steps that aren’t very obvious that need to happen in order for this method to succeed. Remarkably, we learned how to do it and have successfully employed it, and the Event Horizon Telescope marks the first time we’ve ever been able to get an image with a telescope that’s effectively the size of planet Earth!

Come get the incredible science behind how the technique of VLBI enabled the Event Horizon Telescope to construct the first-ever image of a black hole’s event horizon!

Ask Ethan: How Does Very-Long-Baseline Interfe…

Ask Ethan: How Does Very-Long-Baseline Interferometry Allow Us To Image A Black Hole?

“[The Event Horizon Telescope] uses VLBI. So what is interferometry and how was it employed by [the Event Horizon Telescope]? Seems like it was a key ingredient in producing the image of M87 but I have no idea how or why. Care to elucidate?”

If it were easy to network radio telescopes together across the world, we’d have produced an image of a black hole’s event horizon long ago. Well, it’s not easy at all, but it is at least possible! The technique that enabled it is known as VLBI: very-long-baseline interferometry. But there are some critical steps that aren’t very obvious that need to happen in order for this method to succeed. Remarkably, we learned how to do it and have successfully employed it, and the Event Horizon Telescope marks the first time we’ve ever been able to get an image with a telescope that’s effectively the size of planet Earth!

Come get the incredible science behind how the technique of VLBI enabled the Event Horizon Telescope to construct the first-ever image of a black hole’s event horizon!

humanoidhistory: The rings of Saturn, observe…

humanoidhistory:

The rings of Saturn, observed by the Cassini space probe on May 3, 2005.

(NASA)

humanoidhistory: The rings of Saturn, observe…

humanoidhistory:

The rings of Saturn, observed by the Cassini space probe on May 3, 2005.

(NASA)

The Moon Will Swallow Saturn This Friday Morni…

The Moon Will Swallow Saturn This Friday Morning, And You Can See The Event Yourself

“Almost all occultations that are visible from Earth occur between the Moon and another planet, but there’s something special about occultations of Saturn, owing to the extended, easily-visible nature of its ring system. The events themselves last longer as the planet disappears and reappears behind the Moon, as Saturn with its rings is a more extended sight than any other world as viewed from Earth.

There’s an entire astronomy enthusiast community devoted to observing occultations, and they’ve developed some very extensive resources that are freely available to the public. If you miss the occultation of Saturn on March 29, don’t fret; there’s another coming up on April 25, visible from Australia, New Zealand, and the western portion of South America.

When you see that pinprick of light approach the Moon, remember what it is you’re really looking at: the great ringed giant of our Solar System, preparing for its spectacular moment in the shade.”

On Friday morning, March 29, the Moon will appear to pass in front of Saturn, creating the spectacular and rare phenomenon of an occultation. For skywatchers across most of the world, it will simply appear as a close approach, as though the Moon had a satellite of its own for a brief time. But if you’re located in eastern South America or southern Africa, you might want to take a closer look for a chance at seeing the disappearance or reapparance of Saturn behind the Moon!

The Moon will swallow Saturn this coming Friday morning, and if you’re careful and prepared, you can see the event for yourself.

What Would The Milky Way Look Like If You Coul…

What Would The Milky Way Look Like If You Could See All Of Its Light?

“When you look at the Milky Way in visible light, you might see billions of stars, but you miss so much more. The human eye is only sensitive to a tiny fraction of the entire electromagnetic (light) spectrum. Each wavelength range showcases a novel view of all that’s out there.”

If you looked out at our galaxy with your eyes and the wavelengths they’re sensitive to alone, there’s an incredible amount of information you’d miss no matter how powerful you became at gathering light or resolving individual objects. That’s because visible light only occupies a narrow range of electromagnetic wavelengths, meaning that what you can see is limited to what emits visible light (stars and some reflective clouds) and constrained by dust, which can absorb all the visible light behind it.

But there are other wavelengths than these, and they reveal a series of fascinating details. What do they all look like? Come get a fuller picture today!

Ask Ethan: Why Haven’t We Found Gravitat…

Ask Ethan: Why Haven’t We Found Gravitational Waves In Our Own Galaxy?

“Why are all the known gravitational wave sources (coalescing binaries) in the distant universe? Why none has been detected in our neighborhood? […] My guess (which is most probably wrong) is that the detectors need to be precisely aligned for any detection. Hence all the detection until now are serendipitous.”

On September 14, 2015, our view of the Universe changed forever with the first direct detection of gravitational waves. Since then, we’ve detected a variety of black hole and neutron star binaries in the final, end-stages of coalescence, culminating in a spectacular merger. But they’re all hundreds of millions or even billions of light-years away!

Simultaneously, we know that we have neutron stars and black holes in binary systems here in our own galaxy. But of all the gravitational waves that LIGO and Virgo have detected, none of these objects are among them. This remains true, even though we can identify many of them from their electromagnetic signatures.

Why haven’t we found gravitational waves in our own galaxy? Give us a better observatory and we will! Here’s the full scientific story on that.

One Of These Four Missions Will Be Selected As…

One Of These Four Missions Will Be Selected As NASA’s Next Flagship For Astrophysics

“Choosing which of these missions to build and fly will, in many ways, inform our plans for the next 30 years (or more) of astronomy. NASA is the pre-eminent space agency in the world. This is where science, research, development, discovery, and innovation all come together. The spinoff technologies alone justify the investment, but that’s not why we do it. We are here to discover the Universe. We are here to learn all that we can about the cosmos and our place within it. We are here to find out what the Universe looks like and how it came to be the way it is today.

People will always argue over budgets — the penny-pinchers are always happy to propose something that’s faster, cheaper, and worse — but the reality is this: the budget for NASA Astrophysics as a whole is just $1.35 billion per year: less than 0.1% of the federal discretionary budget and less than 0.03% of the total federal budget. And still, for that tiny amount, NASA has steadily built a flagship program that’s the envy of the free world.”

Every 10 years, NASA performs a decadal survey, where it outlines its highest mission priorities for the next 10 years. The 2020 decadal is happening imminently, and once the recommendations are submitted to the National Resource Council at the National Academies of Science, the four flagship finalists will be ranked. This will determine NASA astrophysics’ direction for the 2030s.

James Webb is the flagship for the 2010s; WFIRST is it for the 2020s. What will we choose for the 2030s? It will be one of these four finalists! Dream big, everyone.