Category: baryons

One Cosmic Mystery Illuminates Another, As Fast Radio Burst Intercepts A Galactic Halo

“Although scientists have studied [Fast Radio Bursts] intensely since their discovery, their origins remain mysterious. Meanwhile, an estimated 2 trillion galaxies populate our observable Universe. With incredibly large distances for FRBs to traverse, each one risks passing through an intervening galaxy. Giving off multiple pulses of under 40 microseconds apiece, FRB 181112 became the first burst to intercept a galactic halo.”

Where do fast radio bursts come from? Recent studies have demonstrated that they’re associated with host galaxies, but we don’t understand how they work, why some of them repeat, or why the pulse durations are so variable.

What about galactic halos: how much gas is in them? What is the gas temperature, density, magnetization, etc.? These are big questions about galaxies in general that we don’t have a general picture of. If only there were some way to learn more.

How about luck? We got lucky, in November of 2018, when for the first time a fast radio burst passed through a foreground galaxy’s halo. What did we learn? Come get (and see) the full story!

Missing Matter Found, But Doesn’t Dent Dark Matter

“But this doesn’t eliminate the need for dark matter; it doesn’t touch that undiscovered 27% of matter in the Universe, not in the slightest. It’s another piece of that 5% that we know is out there, that we’re struggling to put together. It’s just protons, neutrons, and electrons, existing in about six times the abundance within these filaments as compared to the cosmic average. The fact that this filamentary structure contains normal matter at all is further evidence for dark matter, since without it there’d be no gravitationally overdense regions to hold the extra normal matter in place. In this case, the WHIM traces the dark matter, further confirming what we know must be out there.”

It’s no secret that if we look at the matter we see in the Universe, the story doesn’t add up. On all scales, from individual galaxies to pairs, groups and clusters of galaxies, all the way up to the large-scale structure of the Universe, the matter we see is insufficient to explain the structures we get. There has to be more matter, both normal (atom-based) matter and dark (non-interacting) matter, to make our theory and predictions match. In a wonderful new pair of papers, two independent teams have detected the warm-hot intergalactic medium along the large-scale structure filaments in the Universe. With six times the normal matter density, this accounts for a significant fraction of the missing normal matter in the Universe! It’s estimated that 50-90% of the baryons in the Universe are part of the WHIM, and this could be the first step towards detecting them. But it doesn’t touch or change the dark matter at all; we still need it and still don’t have it.

What’s the full story on the discovery of the missing matter? Find out over at Starts With A Bang on Forbes!