Category: black hole

For The Last Time: The LHC Will Not Make An Ea…

For The Last Time: The LHC Will Not Make An Earth-Swallowing Black Hole

“To prevent decay, new, unknown physics — for which no evidence exists — must be invoked.

Even if the newly created black hole were stable, it could not devour the Earth. The maximum rate it could consume matter is 1.1 × 10-25 grams-per-second.

It would take 3 trillion years to grow to a mass of 1 kg.”

Well, it was only a matter of time before someone trotted out the long-debunked claim that the LHC could possibly create an Earth-destroying black hole. I, like most of you, just didn’t expect that person to be the esteemed astronomer Sir Martin Rees!

Well, you’ll be happy to know that not only is his claim untrue, but it’s very easy to demonstrate why. You don’t have to point to cosmic rays (which are more energetic and have struck Earth for billions of years) or rely on anything we haven’t already directly observed. In fact, we can even imagine exotic scenarios that could result in the creation of a black hole, and even then, the Earth is entirely safe.

In less than 200 words, you, too, can learn why the LHC will not make an Earth-swallowing black hole. Sorry, all you armchair supervillains out there.

Ask Ethan: Why Is The Black Hole Information L…

Ask Ethan: Why Is The Black Hole Information Loss Paradox A Problem?

“Why do physicists all seem to agree that the information loss paradox is a real problem? It seems to depend on determinism, which seems incompatible with QM.”

There are a few puzzles in the Universe that we don’t yet know the answer to, and they almost certainly are the harbingers of the next great advances. Solving the mysteries of why there’s more matter than antimatter, what dark matter and dark energy are, or why the fundamental particles have the masses they do will surely bring physics to the next level when we figure them out. One much less obvious puzzle, though, is the black hole information loss paradox. It’s true that we don’t yet have a theory of quantum gravity, but we don’t need one to see why this is a problem. When matter falls into a black hole, something ought to happen to keep it from simply losing its information; entropy must not go down. Similarly, when black holes evaporate, a la Hawking radiation, that information can’t just disappear, either.

So where does it go? Are we poised to violate the second law of thermodynamics? Come find out what the black hole information paradox is all about, and why it compels us to find a solution!

This Is How We Will Successfully Image A Black…

This Is How We Will Successfully Image A Black Hole’s Event Horizon

“Normally, the resolution of your telescope is determined by two factors: the diameter of your telescope and the wavelength of light you’re using to view it. The number of wavelengths of light that fit across your dish determines the optimal angular diameter you can resolve. Yet if this were truly our limits, we’d never see a black hole at all. You’d need a telescope the diameter of the Earth to view even the closest ones in the radio, where black holes emit the strongest and most reliably.

But the trick of very-long baseline interferometry is to view extremely bright sources, simultaneously, from identical telescopes separated by large distances. While they only have the light-gathering power of the surface area of the individual dishes, they can, if a source is bright enough, resolve objects with the resolution of the entire baseline. For the Event Horizon Telescope, that baseline is the diameter of the Earth.”

The Event Horizon Telescope is one of the best examples of international collaboration, and its necessity, in answering questions that are too big for any one nation to do alone. Part of the reason for that is geography: if you want to get the highest-resolution information possible about the Universe, you need the longest-baseline of simultaneous observations that it’s possible to make. That means, if you want to go as hi-res as possible, using the full diameter of the Earth. From the Americas to Eurasia to Africa, Australia and even Antarctica, radio astronomers are all working together to create the first image of a black hole’s event horizon.

What does it look like? Is General Relativity correct? As soon as the Event Horizon Telescope team releases their first images, we’ll know. Come watch a live-blog of a talk from their team today, and get the answers as soon as we know them!

What Happens When Planets, Stars, And Black Ho…

What Happens When Planets, Stars, And Black Holes Collide?

Brown dwarf collisions. Want to make a star, but you didn’t accumulate enough mass to get there when the gas cloud that created you first collapsed? There’s a second chance available to you! Brown dwarfs are like very massive gas giants, more than a dozen times as massive as Jupiter, that experience strong enough temperatures (about 1,000,000 K) and pressures at their centers to ignite deuterium fusion, but not hydrogen fusion. They produce their own light, they remain relatively cool, and they aren’t quite true stars. Ranging in mass from about 1% to 7.5% of the Sun’s mass, they are the failed stars of the Universe.

But if you have two in a binary system, or two in disparate systems that collide by chance, all of that can change in a flash.”

Nothing in the Universe exists in total isolation. Planets and stars all have a common origin inside of star clusters; galaxies clump and cluster together and are the homes for the smaller masses in the Universe. In an environment such as this, collisions between objects are all but inevitable. We think of space as being extremely sparse, but gravity is always attractive and the Universe sticks around for a long time. Eventually, collisions will occur between planets, stars, stellar remnants, and black holes.

What happens when they run into one another? Unbelievably, we not only know, we have the evidence to back it up!

The Surprising Reason Why Neutron Stars Don&rs…

The Surprising Reason Why Neutron Stars Don’t All Collapse To Form Black Holes

“The measurements of the enormous pressure inside the proton, as well as the distribution of that pressure, show us what’s responsible for preventing the collapse of neutron stars. It’s the internal pressure inside each proton and neutron, arising from the strong force, that holds up neutron stars when white dwarfs have long given out. Determining exactly where that mass threshold is just got a great boost. Rather than solely relying on astrophysical observations, the experimental side of nuclear physics may provide the guidepost we need to theoretically understand where the limits of neutron stars actually lie.”

If you take a large, massive collection of matter and compress it down into a small space, it’s going to attempt to form a black hole. The only thing that can stop it is some sort of internal pressure that pushes back. For stars, that’s thermal, radiation pressure. For white dwarfs, that’s the quantum degeneracy pressure from the electrons. And for neutron stars, there’s quantum degeneracy pressure between the neutrons (or quarks) themselves. Only, if that last case were the only factor at play, neutron stars wouldn’t be able to get more massive than white dwarfs, and there’s strong evidence that they can reach almost twice the Chandrasekhar mass limit of 1.4 solar masses. Instead, there must be a big contribution from the internal pressure each the individual nucleon to resist collapse.

For the first time, we’ve measured that pressure distribution inside the proton, paving the way to understanding why massive neutron stars don’t all form black holes.

This Is Why The Event Horizon Telescope Still …

This Is Why The Event Horizon Telescope Still Doesn’t Have An Image Of A Black Hole

“Of all the black holes visible from Earth, the largest is at the galactic center: 37 μas.

With a theoretical resolution of 15 μas, the EHT should resolve it.

Despite the incredible news that they’ve detected the black hole’s structure at the galactic center, however, there’s still no direct image.”

Last year, data from the South Pole Telescope, a 10-meter radio telescope located at the South Pole, was added to the Event Horizon Telescope team’s overall set of information. Here we are, though, half a year later, and we still don’t have a direct image of the event horizon for the galactic center’s black hole. There aren’t any problems; the issue is that we have to successfully calibrate and error-correct the data, and that takes time and care to get it right. Science isn’t about getting the answer in the time you have to get it; it’s about getting the right answer in the time it takes to get things right. From that point of view, there’s every reason this is worth waiting for.

The Event Horizon Telescope team is on the right track; here’s where we are right now in our quest to create the first image of a black hole’s event horizon!

How Do The Most Massive Stars Die: Supernova, …

How Do The Most Massive Stars Die: Supernova, Hypernova, Or Direct Collapse?

“When we see a very massive star, it’s tempting to assume it will go supernova, and a black hole or neutron star will remain. But in reality, there are two other possible outcomes that have been observed, and happen quite often on a cosmic scale. Scientists are still working to understand when each of these events occurs and under what conditions, but they all happen. The next time you look at a star that’s many times the size and mass of our Sun, don’t think “supernova” as a foregone conclusion. There’s a lot of life left in these objects, and a lot of possibilities for their demise, too. We know our observable Universe started with a bang. For the most massive stars, we still aren’t certain whether they end with the ultimate bang, destroying themselves entirely, or the ultimate whimper, collapsing entirely into a gravitational abyss of nothingness.”

How do stars die? If you’re low in mass, you’ll burn through all your fuel and just contract down. If you’re mid-ranged, like our Sun, you’ll become a giant, blow off your outer layers, and then the remaining core will contract to a white dwarf. And the high-mass stars can take an even more spectacular path: going supernova to produce either a neutron star or a black hole at their core. But that’s not all a high-mass star can do. We’ve seen supernova impostors, hypernovae that are even more luminous than the brightest supernova, and direct collapse black holes, where no explosion or even ejecta exists from a star that used to be present and massive. The science behind them in incredible, and while there are still uncertainties in predicting a star’s fate, we’re learning more all the time.

Come get the fascinating physics behind how the most massive stars die. You might think “supernova” every time, but the Universe is far more intricate and complex than that!

This Is Why Our Universe Didn’t Collapse Into …

This Is Why Our Universe Didn’t Collapse Into A Black Hole

“The level to which the expansion rate and the overall energy density must balance is insanely precise; a tiny change back then would have led to a Universe vastly different than the one we presently observe. And yet, this finely-tuned situation very much describes the Universe we have, which didn’t collapse immediately and which didn’t expand too rapidly to form complex structures. Instead, it gave rise to all the wondrous diversity of nuclear, atomic, molecular, cellular, geologic, planetary, stellar, galactic and clustering phenomena we have today. We’re lucky enough to be around right now, to have learned all we have about it, and to engage in the enterprise of learning even more: the process of science. The Universe didn’t collapse into a black hole because of the remarkably balanced conditions under which it was born, and that might just be the most remarkable fact of all.”

The Universe is a vast and complex place, full of a diversity of structure from the smallest scales to the largest. And yet, by many accounts, it’s a wonder that it came to be this way at all.

If things were just a little bit different at the very beginning, the Universe could have recollapsed in on itself in a mere fraction-of-a-second after the Big Bang. That very clearly didn’t happen, but why not? And, if it did happen, would we have formed a black hole? There must have been an incredibly perfect, finely-tuned balance between the initial expansion rate and the energy density of everything within the Universe, or this careful balance wouldn’t have existed, and we never would have arisen in this Universe.

Yet, here we are! So, what factors conspired to allow us to exist, exactly as we are? Come find out for yourself!

Einstein’s Ultimate Test: Star S0-2 To E…

Einstein’s Ultimate Test: Star S0-2 To Encounter Milky Way’s Supermassive Black Hole

“The largest, closest single mass to Earth is Sagittarius A*, our Milky Way’s supermassive black hole, weighing in at 4,000,000 solar masses.
The star S0-2 makes the closest known approach to this black hole, reaching a minimum distance of just 18 billion kilometers.
That’s only three times the Sun-Pluto distance, or a meager 17 light-hours.”

After a 16 year wait, the closest star to the Milky Way’s supermassive black hole, S0-2, will make its closest approach later this year. At its closest, it should be moving at a whopping 2.5% the speed of light, enabling us to test out Einstein’s relativity in an entirely new regime. We should, for the first time, be able to measure the gravitational redshift from our galactic center, and to track the relativistic “kick” that Einstein’s theory predicts when an orbit gets modified by traveling close to an extremely large mass. New studies have recently shown that S0-2 doesn’t appear to have a binary companion, which makes it even more interesting for such an observation, which won’t come again until the year 2034. As a bonus, scientists hope to shed light on how stars form in the harsh environment of the galactic center at all.

Come find out how the newest test of Einstein could push us past the limits of relativity, or confirm it in an entirely new way!

Black Hole Mergers To Be Predicted Years In Ad…

Black Hole Mergers To Be Predicted Years In Advance By The 2030s

“When we detect black hole-black hole events with LIGO, it’s only the last few orbits that have a large enough amplitude to be seen above the background noise. The entirety of the signal’s duration lasts from a few hundred milliseconds to only a couple of seconds. By time a signal is collected, identified, processed, and localized, the critical merger event has already passed. There’s no way to point your telescopes — the ones that could find an electromagnetic counterpart to the signal — quickly enough to catch them from birth. Even inspiraling and merging neutron stars could only last tens of seconds before the critical “chirp” moment arrives. Processing time, even under ideal conditions, makes predicting the particular when-and-where a signal will occur a practical impossibility. But all of this will change with LISA.”

The past few years have ushered in the era of gravitational wave astronomy, turning a once-esoteric and controversial prediction of General Relativity into a robust, observational science. Less than a year ago, with three independent detectors online at once, the first localizations of gravitational wave signals were successfully performed. Multi-messenger astronomy, with gravitational waves and an electromagnetic follow-up, came about shortly thereafter, with the first successful neutron star-neutron star merger. But one prediction still eludes us: the ability to know where and when a merger will occur way in advance.

Thanks to LISA, launching in the 2030s, that’s all going to change. Suddenly, we’ll be able to predict these events weeks, months, or even years in advance! Here’s how.