Category: black holes

Sorry, Black Holes Aren’t Actually Black

Sorry, Black Holes Aren’t Actually Black

“If you have an astrophysical object that emits radiation, that immediately defies the definition of black: where something is a perfect absorber while itself emitting zero radiation. If you’re emitting anything, you aren’t black, after all.

So it goes for black holes. The most perfectly black object in all the Universe isn’t truly black. Rather, it emits a combination of all the radiation from all the objects that ever fell into it (which will asymptote to, but never reach, zero) along with the ultra-low-temperature but always-present Hawking radiation.

You might have thought that black holes truly are black, but they aren’t. Along with the ideas that black holes suck everything into them and black holes will someday consume the Universe, they’re the three biggest myths about black holes. Now that you know, you’ll never get fooled again!”

So, you thought you knew all there way to know about black holes? That if you get enough mass together in a small enough volume of space, you create an event horizon: a region from within which nothing can escape, not even light. So how is it, then, that black holes wind up emitting radiation, even long after the last particle of matter to fall into them has ceased?

There are two ways this occurs, and both are completely unavoidable. Black holes aren’t actually black, and this is how we know it.

No, Black Holes Will Never Consume The Univers…

No, Black Holes Will Never Consume The Universe

“Yes, there will be a very, very small number of stars, planets, asteroids and more that do get consumed by black holes, but it will be less than 0.1% of all the matter presently in the Universe. Even dark matter will remain in the outskirts of galaxies, unable to be eaten by black holes.

You might think that after googols and googols of years, anything still present in a galaxy will eventually be consumed, but don’t forget about Hawking radiation: eventually, all the Universe’s black holes will decay, too. Before any substantial fraction of the remaining galactic matter — normal or dark — can be devoured, every black hole in the Universe will have completely decayed away. If something dear to you does fall into a black hole, don’t despair. Try waiting instead. If you’re clever enough, you’ll not only get its energy back again someday, but most likely its information, too.”

About a month ago, I gave a talk in Hungary at their big international event: Brain Bar, where I spoke about the biggest myths about black holes. One of them is the idea that eventually, if you wait around for long enough, black holes will consume the entire Universe. It makes sense to think that this could happen, since gravity is real, there are close to a billion black holes in our galaxy, objects do randomly collide with one another, and gravitational radiation cause all bound masses to eventually inspiral into one another. But, as it turns out, something else happens first.

The overwhelming majority of matter will never find its way into a black hole, and black holes won’t consume the Universe. Here’s what happens instead.

No, Black Holes Don’t Suck Everything In…

No, Black Holes Don’t Suck Everything Into Them

“The fact of the matter is that black holes aren’t sucking anything in; there’s no force that a black hole exerts that a normal object (like a moon, planet, or star) doesn’t exert. In the end, it’s all just gravity. The biggest difference is that black holes are denser than most objects, occupying a much smaller volume of space, and capable of being far more massive than any other single object.

But matter is charged, accretion disks and flows are real, generate magnetic fields, and accelerate most of the infalling matter away from the event horizon itself. If you’ve ever had to deal with a young child who eats a quarter of their food while spilling the rest on their faces, the table and the floor, cheer up. You can always comfort yourself with this knowledge: at least they’re doing much better than a black hole.”

Do black holes, like some sort of cosmic vacuum cleaner, suck matter into them? Hardly. They simply gravitate, no different than any other mass in the Universe. But in the act of attracting matter, they cause it to accelerate, heat up, and experience tidal forces, which causes them to become extremely messy eaters. In fact, a black hole is much more like a Cookie Monster in terms of how it eats than it is like a vacuum cleaner.

If you’ve ever heard the myth that black holes suck matter into them, know that it’s a completely unfounded story that contradicts known science. Now, go and tell NASA.

How Did This Black Hole Get So Big So Fast?

How Did This Black Hole Get So Big So Fast?

“Recently, a new black hole, J1342+0928, was discovered to originate from 13.1 billion years ago: when the Universe was 690 million years old, just 5% of its current age. It has a mass of 800 million Suns, an exceedingly high figure for such early times. Even if black holes formed from the very first stars, they’d have to accrete matter and grow at the maximum rate possible — the Eddington limit — to reach this size so rapidly. Fortunately, other methods may also grow a supermassive black hole.”

One of the puzzles of how our Universe grew up is how the supermassive black holes we find at the centers of galaxies got so big so fast. We’ve got multiple black holes that come from when the Universe was less than 10% of its current age that are already many hundreds of millions, if not billions, of solar masses in size. How did they get so big so fast? While many hypothesize exotic scenarios like our Universe being born with (primordial) black holes, there is no evidence for such an extraordinary leap. Could conventional astrophysics, and the realistic conditions of our early Universe, actually lead to black holes so massive so early on?

The answer is very likely yes. Come see an extremely favored scenario, with nothing more than conventional astrophysics, that just might get us there.

10 Deep Lessons From Our First Image Of A Blac…

10 Deep Lessons From Our First Image Of A Black Hole’s Event Horizon

6. Black holes are dynamic entities, and the radiation emitted from them changes over time. With a reconstructed mass of 6.5 billion solar masses, it takes roughly a day for light to travel across the black hole’s event horizon. This roughly sets the timescale over which we expect to see features change and fluctuate in the radiation observed by the Event Horizon Telescope.

Even with observations that span only a few days, we’ve confirmed that the structure of the emitted radiation changes over time, as predicted. The 2017 data contains four nights of observations. Even glancing at these four images, you can visually see how the first two dates have similar features, and the latter two dates have similar features, but there are definitive changes that are visible — and variable — between the early and late image sets. In other words, the features of the radiation from around M87’s black hole really are changing over time.”

I’ve heard some grumbling over the past day that people are unimpressed with the Event Horizon Telescope collaboration’s big reveal. Maybe the image doesn’t look pretty enough for some people; maybe it doesn’t have the sharpness or level of detail that people are used to from observatories like Hubble.

Well, may I please introduce you to science? If you knew what we’ve actually learned by taking this image, you might change your tune. Read this, and see if you’re not impressed now!

10 Deep Lessons From Our First Image Of A Blac…

10 Deep Lessons From Our First Image Of A Black Hole’s Event Horizon

6. Black holes are dynamic entities, and the radiation emitted from them changes over time. With a reconstructed mass of 6.5 billion solar masses, it takes roughly a day for light to travel across the black hole’s event horizon. This roughly sets the timescale over which we expect to see features change and fluctuate in the radiation observed by the Event Horizon Telescope.

Even with observations that span only a few days, we’ve confirmed that the structure of the emitted radiation changes over time, as predicted. The 2017 data contains four nights of observations. Even glancing at these four images, you can visually see how the first two dates have similar features, and the latter two dates have similar features, but there are definitive changes that are visible — and variable — between the early and late image sets. In other words, the features of the radiation from around M87’s black hole really are changing over time.”

I’ve heard some grumbling over the past day that people are unimpressed with the Event Horizon Telescope collaboration’s big reveal. Maybe the image doesn’t look pretty enough for some people; maybe it doesn’t have the sharpness or level of detail that people are used to from observatories like Hubble.

Well, may I please introduce you to science? If you knew what we’ve actually learned by taking this image, you might change your tune. Read this, and see if you’re not impressed now!

This Is What We Know About Black Holes In Adva…

This Is What We Know About Black Holes In Advance Of The Event Horizon Telescope’s First Image

“For hundreds of years, humanity has expected black holes to exist. Over the course of all of our lifetimes, we’ve collected an entire suite of evidence that points not only to their existence, but to a fantastic agreement between their expected theoretical properties and what we’ve observed. But perhaps the most important prediction of all — that of the event horizon’s existence and properties — has never been directly tested before.

With simultaneous observations in hand from hundreds of telescopes across the globe, scientists have finished reconstructing an image, based on real data, of the largest black hole as seen from Earth: the 4 million solar mass monster at the center of the Milky Way. What we’ll see on April 10 will either further confirm General Relativity or cause us to rethink all that we believe about gravity. Eager with anticipation, the world now awaits.”

The Event Horizon Telescope will, on April 10 (tomorrow, at the time of this writing), release an image two years in the making: of the event horizon of the black hole at the Milky Way’s center. Many will look at this as the first definitive proof that black holes truly exist, but we mustn’t forget all the (overwhelming!) evidence we already have in hand. There is a ton that we already know about black holes that has been demonstrated observationally, and all of it is in spectacular agreement with what we theoretically expect.

On the eve of the Event Horizon Telescope’s big announcement, take some time to get a little perspective, and learn what we already know about black holes!

This Is What We Know About Black Holes In Adva…

This Is What We Know About Black Holes In Advance Of The Event Horizon Telescope’s First Image

“For hundreds of years, humanity has expected black holes to exist. Over the course of all of our lifetimes, we’ve collected an entire suite of evidence that points not only to their existence, but to a fantastic agreement between their expected theoretical properties and what we’ve observed. But perhaps the most important prediction of all — that of the event horizon’s existence and properties — has never been directly tested before.

With simultaneous observations in hand from hundreds of telescopes across the globe, scientists have finished reconstructing an image, based on real data, of the largest black hole as seen from Earth: the 4 million solar mass monster at the center of the Milky Way. What we’ll see on April 10 will either further confirm General Relativity or cause us to rethink all that we believe about gravity. Eager with anticipation, the world now awaits.”

The Event Horizon Telescope will, on April 10 (tomorrow, at the time of this writing), release an image two years in the making: of the event horizon of the black hole at the Milky Way’s center. Many will look at this as the first definitive proof that black holes truly exist, but we mustn’t forget all the (overwhelming!) evidence we already have in hand. There is a ton that we already know about black holes that has been demonstrated observationally, and all of it is in spectacular agreement with what we theoretically expect.

On the eve of the Event Horizon Telescope’s big announcement, take some time to get a little perspective, and learn what we already know about black holes!

Ask Ethan: Do Merging Black Holes Create An In…

Ask Ethan: Do Merging Black Holes Create An Information-Loss Paradox?

“When black holes merge they [lose] energy through gravitational waves. Does this pose the same problem as Hawking radiation does, with respect to loss of information? Or is the information on what has gone into the black hole somehow encoded into the gravitational wave? And if it is could we someday hope to decode what went into the black hole using gravitational waves?”

Black holes and entropy have long been a problem. If you calculate a black hole’s temperature and entropy in General Relativity alone, you get an absurd answer: 0. That implies that the pre-existing object that forms a black hole, which definitely has entropy, would see it disappear when it formed a black hole. But the entropy of a system can never decrease, implying that black holes must have an entropy after all: encoded on the surface of the event horizon. So let’s take two black holes with entropy on their event horizon and merge them together. What happens? You form a larger black hole with a larger event horizon, while gravitational waves carry away roughly 5% of that mass in the form of gravitational waves.

Who gets the entropy? Is it still conserved? And where does it go, in theory and in practice? Here’s what we know so far, for the final Ask Ethan of 2018!

Five Surprising Truths About Black Holes From …

Five Surprising Truths About Black Holes From LIGO

1.) The largest merging black holes are the easiest to see, and they don’t appear to get larger than about 50 solar masses. One of the best things about looking for gravitational waves is that it’s easier to see them from farther away than it is for a light source. Stars appear dimmer in proportion to their distance squared: a star 10 times the distance is just one-hundredth as bright. But gravitational waves are dimmer in direct proportion to distance: merging black holes 10 times as far away produce 10% the signal.

As a result, we can see very massive objects to very great distances, and yet we don’t see black holes merging with 75, 100, 150, or 200+ solar masses. 20-to-50 solar masses are common, but we haven’t seen anything above that yet. Perhaps the black holes arising from ultra-massive stars truly are rare.”

Well, the LIGO and Virgo collaborations have put their head together to re-analyze the full suite of their scientific data, and guess what they found: a total of 11 merger events, including ten black hole-black hole mergers. Now that we’re in the double digits, we can actually start to say some incredibly meaningful things about what’s present in the Universe, what we’ve seen, and what that means for what comes next. Which black holes are the most common? How frequently do these mergers occur? What’s the highest-mass black hole binary that LIGO could detect? And how many black holes do we expect to find when run III starts up in 2019?

The answers are coming! Come see what we know so far, and learn five surprising truths about black holes, courtesy of our findings from LIGO!