Category: cosmology

How Can We Still See The Disappearing Universe…

How Can We Still See The Disappearing Universe?

“In fact, we can even think about what you’d see if you were to look at a galaxy whose light hasn’t arrived at our eyes yet. The most distant object we can see, 13.8 billion years after the Big Bang, is presently 46 billion light-years away from us. But any object that’s presently within 61 billion light-years of us will someday have that light eventually reach us.

That light was already emitted, and is already on its way to us. In fact, that light is already most of the way there; it’s closer than the 15 billion light-year limit of what we could possibly reach if we left for it at the speed of light. Even though the Universe is expanding, and even though the expansion is accelerating, that journeying light will someday arrive at our eyes, giving us, in the far future, the ability to see even more galaxies than we can today.”

Dark energy seems to present a paradox. On the one hand, galaxies are receding from us as the Universe expands, meaning we can never reach them once they’re beyond a certain point, and that the light being emitted by them can also no longer reach us. But even though these galaxies are a part of our dark energy-dominated Universe, we’ll always be able to see them in the future once they become visible to us.

If the Universe is disappearing, how can we still see the galaxies in it? Come get the answer to one of cosmology’s biggest (misconception-related) puzzles today!

Ask Ethan: Could ‘Cosmic Redshift’…

Ask Ethan: Could ‘Cosmic Redshift’ Be Caused By Galactic Motion, Rather Than Expanding Space?

“When we observe a distant galaxy, the light coming from the galaxy is redshifted either due to expansion of space or actually the galaxy is moving away from us. How do we differentiate between the cosmological redshift and Doppler redshift? I have searched the internet for answers but could not get any reasonable answer.”

It’s true: the farther away we look, the greater we find a galaxy’s redshift to be. But why is that? You may have heard the (correct) answer: because space is expanding. But how do we know that? Couldn’t something else be causing this redshift?

The answer is yes, there are actually four other explanations for cosmic redshift that all make sense. But the beauty of science is that there are observational tests we can perform to tell these various scenarios apart! We’ve done those tests, of course, and concluded the Universe is expanding, but wouldn’t you like to know how?

I bet you would! Come and find out how we know that cosmic redshift is caused by the expansion of the Universe, and learn where the alternatives fall apart.

This Is Why The Multiverse Must Exist “This p…

This Is Why The Multiverse Must Exist

“This picture, of huge Universes, far bigger than the meager part that’s observable to us, constantly being created across this exponentially inflating space, is what the Multiverse is all about. It’s not a new, testable scientific prediction, but rather a theoretical consequence that’s unavoidable, based on the laws of physics as they’re understood today. Whether the laws of physics are identical to our own in those other Universes is unknown.

If you have an inflationary Universe that’s governed by quantum physics, a Multiverse is unavoidable. As always, we are collecting as much new, compelling evidence as we can on a continuous basis to better understand the entire cosmos. It may turn out that inflation is wrong, that quantum physics is wrong, or that applying these rules the way we do has some fundamental flaw. But so far, everything adds up. Unless we’ve got something wrong, the Multiverse is inevitable, and the Universe we inhabit is just a minuscule part of it.”

Skeptical about the Multiverse? You’re not alone. After all, how can you be confident that something must exist if the experimental, measurable, or observational evidence that’s required to validate its existence isn’t located within our observable Universe? It’s a reasonable thought, but there are ways to know something that go beyond verifying the exact phenomenon we’re looking for. This is why theoretical physics is so powerful: it not only allows you to draw conclusions about things you have not yet observed, but about things you cannot observe at all.

Come find out how, and learn why the Multiverse really must exist.

Ask Ethan: If The Universe Ends In A Big Crunc…

Ask Ethan: If The Universe Ends In A Big Crunch, Will All Of Space Recollapse?

“When you describe the Big Crunch, you talk about a race between gravity and the expansion of space. It’s not clear to me that if gravity wins that race, whether space stops expanding, or simply that the matter in space stops expanding. I’d love to hear your explanation of this.”

The Universe is expanding, and we can confirm this by looking at the relationship between how redshifted a galaxy’s light is compared with how far away it is from us. But if these galaxies, at some point in the far future, stop being redshifted and start moving closer and closer to us again, does that necessarily mean that the fabric of space is contracting? Is all of space necessarily recollapsing? Or could the galaxies simply be moving towards us, owing to some massive attraction, while the fabric of space doesn’t recollapse at all? Does a Big Crunch necessarily equate to a recollapsing Universe?

Even though we don’t know whether dark energy will reverse itself or not, we do know the answer to this question, and yes, a Big Crunch does mean recollapse! Find out why on this edition of Ask Ethan.

How Much Of The Dark Matter Could Neutrinos Be…

How Much Of The Dark Matter Could Neutrinos Be?

“If we restrict ourselves to the Standard Model alone, we simply cannot account for the dark matter that must be present in our Universe. None of the particles we know of have the right behavior to explain all of the observations. We can imagine a Universe where neutrinos have relatively large amounts of mass, and that would result in a Universe with significant quantities of dark matter. The only problem is that dark matter would be hot, and lead to an observably different Universe than the one we see today.

Still, the neutrinos we know of do behave like dark matter, although it only makes up about 1% of the total dark matter out there. That’s not totally insignificant; it equals the mass of all the stars in our Universe! And most excitingly, if there truly is a sterile neutrino species out there, a series of upcoming experiments ought to reveal it over the next few years. Dark matter might be one of the greatest mysteries out there, but thanks to neutrinos, we have a chance at understanding it at least a little bit.”

Dark matter is a form of matter that gravitates, but neither absorbs nor emits light, and has been frustratingly difficult to pin down and directly detect. There’s a known particle that has exactly those same properties: the neutrino! You might wonder, then, if perhaps neutrinos had the right value of mass and number, if they could make up the dark matter? And if not all of it, could they at least make up part of it? This is a question that astronomers and physicists have pondered for decades, and we might be closer than ever to the actual answer.

How much of the dark matter can neutrinos actually be? Find out today!

How Much Of The Unobservable Universe Will We …

How Much Of The Unobservable Universe Will We Someday Be Able To See?

“You might think that if we waited for an arbitrarily long amount of time, we’d be able to see an arbitrarily far distance, and that there would be no limit to how much of the Universe would become visible.

But in a Universe with dark energy, that simply isn’t the case. As the Universe ages, the expansion rate doesn’t drop to lower and lower values, approaching zero. Instead, there remains a finite and important amount of energy intrinsic to the fabric of space itself. As time goes on in a Universe with dark energy, the more distant objects will appear to recede from our perspective faster and faster. Although there’s still more Universe out there to discover, there’s a limit to how much of it will ever become observable to us.”

The Universe is a huge, vast, enormous place. It’s been 13.8 billion years since the Big Bang occurred, which translates into an observable Universe that’s 46 billion light years to its edge, and contains some 2 trillion galaxies in various stages of evolutionary development. But that’s not the end of what we’ll ever be able to observe. As time goes on, light that’s presently on its way to our eyes will eventually catch up, revealing a future visibility limit that’s even larger than the present observable Universe. When we add it all up, we’ll find that we more than double the number of galaxies we can observe, even though we can barely reach 1% of them.

How does this all work? Find out the limits of the observable and unobservable Universe today!

Earliest Signal Ever: Scientists Find Relic Ne…

Earliest Signal Ever: Scientists Find Relic Neutrinos From 1 Second After The Big Bang

“This cosmic neutrino background (CNB) has been theorized to exist for practically as long as the Big Bang has been around, but has never been directly detected. Because neutrinos have such a tiny cross-section with other particles, we generally need them to be at very high energies in order to see them. The energy imparted to each neutrino leftover from the Big Bang corresponds to only 168 micro-electron-volts (μeV) today, while the neutrinos we can measure have many billions of times as much energy. No proposed experiments are theoretically capable of seeing them.

But there are two ways to see them indirectly: from their effects on the CMB and on the large-scale structure of the Universe.”

When we look at the Universe, one of our great cosmic quests is to go earlier than ever before. To the first galaxies, the first stars, the first atoms, and even earlier, if possible. That’s how we put the best theories of our cosmic origins, like the Big Bang, to the ultimate test. The earliest observable signal from the classical Big Bang is a bath of neutrinos and antineutrinos, which froze-out when the Universe was just 1 second old. For generations, this was regarded as an undetectable prediction, but there are two ways that they might affect observable features of the Universe.

It’s 2019, and we’ve now seen them both. The results? The cosmic neutrino background looks exactly like the Big Bang predicts. Come get the incredible scoop!

What Was It Like When Our Solar System First F…

What Was It Like When Our Solar System First Formed?

“Over the past few years, we’ve finally been able to observe solar systems in these very early stages of formation, finding central stars and proto-stars shrouded by gas, dust, and protoplanetary disks with gaps in them. These are the seeds of what will become giant and rocky planets, leading to full-on solar systems like our own. Although most of the stars that form — including, very likely our own — will have formed amidst thousands of others in massive star clusters, there are a few outliers that form in relative isolation.

Although the history of the Universe may subsequently separate us from all of our stellar and planetary siblings from the nebula that they formed in billions of years ago, scattering them across the galaxy, our shared history remains. Whenever we find a star with approximately the same age and abundance of heavy elements as our Sun, we cannot help but wonder: is this one of our long-lost siblings? The galaxy is likely full of them.”

It took a whopping 9.2 billion years of cosmic evolution for the Universe to give rise to the very beginning of our Solar System; our Sun and planets didn’t form until 2/3rds of the time since the Big Bang had passed. In order to get there, we needed to form the right ingredients for life, rocky planets, and the chemistry we need. But when it happened to us, we weren’t alone. It likely happened exactly the same way for thousands of other stars at once, and continues to happen even up through the present day.

Are we alone in the Universe? The cosmic story that brought us to existence seems to be a story that’s universal. Here’s a key step in how we got here.

What Was It Like When Dark Energy First Took O…

What Was It Like When Dark Energy First Took Over The Universe?

“In reality, we can only make observations at one point in time: today, or when the light from all the distant objects throughout the Universe is finally reaching us. But we can imagine our hypothetical scenario just as well.

What would we see if we could track a single, individual galaxy — including both its distance and its redshift as seen from our perspective — throughout the history of the Universe?

The answer may be a little counterintuitive, but it’s tremendously illustrative and educational as far as shedding light on not only what dark energy is, but how it affects the expansion of the Universe.”

If you could put your finger down on a distant, individual galaxy far away and unbound from our own, what would you see if you could track its motion over time? For the first few billion years, it would be moving away very quickly, getting more and more distant, but it would appear to slow down. It would be as though gravity were trying to pull it back to us, albeit unsuccessfully. And then, at a critical moment some 7.8 billion years after the Big Bang, this slowing down would cease. The galaxy would transition from decelerating to accelerating, and would speed away from us, faster and faster, ever after.

This marks the transition to when dark energy took over the expanding Universe. Come find out what it was like when that happened, and how, today!

This Is Why We Aren’t Expanding, Even If…

This Is Why We Aren’t Expanding, Even If The Universe Is

“As long as the Universe has the properties we measure it to have, this will remain the case forever. Dark energy may exist and cause the distant galaxies to accelerate away from us, but the effect of the expansion across a fixed distance will never increase. Only in the case of a cosmic “Big Rip” — which the evidence points away from, not towards — will this conclusion change.

The fabric of space itself may still be expanding everywhere, but it doesn’t have a measurable effect on every object. If some force binds you together strongly enough, the expanding Universe will have no effect on you. It’s only on the largest scales of all, where all the binding forces between objects are too weak to defeat the speedy Hubble rate, that expansion occurs at all. As physicist Richard Price once put it, “Your waistline may be spreading, but you can’t blame it on the expansion of the universe."”

On the largest cosmic scales, everywhere we look, we see things moving away from us. The distant galaxies are receding not only from our perspective, but from one another. The Universe is expanding, a scientific fact that’s now nearly 100 years old. But we ourselves aren’t. Atoms remain the same size, as do our bodies, as do the scales of planets, solar systems, stars, and individual galaxies. Even groups and clusters of galaxies don’t appear to expand.

Why is that? Why aren’t we expanding, even as the Universe itself expands? Come get the physical explanation of the most profound phenomenon in the Universe.