##

The 5 Lessons Everyone Should Learn From Einstein’s Most Famous Equation: E = mc^2

“3.) **Einstein’s E = mc**^{2} is responsible for why the Sun (like any star) shines. Inside the core of our Sun, where the temperatures rise over a critical temperature of 4,000,000 K (up to nearly four times as large), the nuclear reactions powering our star take place. Protons are fused together under such extreme conditions that they can form a deuteron — a bound state of a proton and neutron — while emitting a positron and a neutrino to conserve energy.

Additional protons and deuterons can then bombard the newly formed particle, fusing these nuclei in a chain reaction until helium-4, with two protons and two neutrons, is created. This process occurs naturally in all main-sequence stars, and is where the Sun gets its energy from.”

Even if you don’t know any physics at all, there’s a good chance that there’s at least one equation you know of: Einstein’s E = mc^2. It tells us that energy and mass are equivalent quantities, and that c^2 (the speed of light squared) is the constant that enables you to convert from one to the other. Along for the ride, we learn some amazing things, including that mass is not conserved, that bound objects have less mass than the same objects when they’re not bound, and that you can spontaneously create matter/antimatter pairs if you have enough available energy under the right conditions.

Einstein may be synonymous with “this is too hard for most people to understand,” but it doesn’t have to be this way. Get the 5 lessons everyone should know about E = mc^2 today!