Category: fate of the Universe

Ask Ethan: If The Universe Ends In A Big Crunc…

Ask Ethan: If The Universe Ends In A Big Crunch, Will All Of Space Recollapse?

“When you describe the Big Crunch, you talk about a race between gravity and the expansion of space. It’s not clear to me that if gravity wins that race, whether space stops expanding, or simply that the matter in space stops expanding. I’d love to hear your explanation of this.”

The Universe is expanding, and we can confirm this by looking at the relationship between how redshifted a galaxy’s light is compared with how far away it is from us. But if these galaxies, at some point in the far future, stop being redshifted and start moving closer and closer to us again, does that necessarily mean that the fabric of space is contracting? Is all of space necessarily recollapsing? Or could the galaxies simply be moving towards us, owing to some massive attraction, while the fabric of space doesn’t recollapse at all? Does a Big Crunch necessarily equate to a recollapsing Universe?

Even though we don’t know whether dark energy will reverse itself or not, we do know the answer to this question, and yes, a Big Crunch does mean recollapse! Find out why on this edition of Ask Ethan.

The Five Ways The Universe Might End

The Five Ways The Universe Might End

4.) Dark energy could transition into another form of energy, rejuvenating the Universe. If dark energy doesn’t decay, but instead remains constant or even strengthens, there’s another possibility that arises. This energy, inherent to the fabric of space today, may not remain in that form forever. Instead, it could get converted into matter-and-radiation, similar to what occurred when cosmic inflation ended and the hot Big Bang began.

If dark energy remains constant until that point, it will create a very, very cold and diffuse version of the hot Big Bang, where only neutrinos and photons can self-create. But if dark energy increases in strength, it could lead to an inflation-like state followed by a new, truly hot Big Bang once again. This is the most straightforward way to rejuvenate the Universe, and create a cyclic-like set of parameters, where the Universe gets another chance to behave like ours did.”

Based on the best knowledge and data that we have today, it’s clear that the Universe isn’t just expansion, but the expansion is accelerating. Does this determine the fate of our Universe unambiguously? If we extrapolate what the data indicates about dark energy into the future, we fully expect that structures (like our local group) that are gravitationally bound today will remain so into the future, but that larger-scale structures which are unbound (like our supercluster, Laniakea) will eventually dissociate. But extrapolation is tricky, and assumes that dark energy doesn’t change over time.

If we allow the possibility of change, though, many more possibilities arise. Here are the five most likely, and how we’ll distinguish between them!

Ask Ethan: Could The Universe Be Torn Apart In…

Ask Ethan: Could The Universe Be Torn Apart In A Big Rip?

“Is The Big Rip—where expansion exceeds all the other forces—still considered a possible future for our Universe? What are the arguments for or against? And if so, how would it unfold, what would happen?”

In addition to normal matter, dark matter, neutrinos, and radiation, the Universe is made up of dark energy: a new form of energy intrinsic to space itself. Although the data indicates that dark energy is consistent with being a cosmological constant, whose energy density won’t change with time, it’s possible that this energy will increase or decrease in strength. If it decreases, it could decay entirely or even reverse sign. resulting in a Big Crunch. But if it increases, we could have a spectacularly catastrophic fate: the Big Rip. In the Big Rip, bound objects will literally be ripped apart on galactic, stellar, planetary, and eventually even atomic scales. Even space itself will rip apart in the end.

The Big Rip isn’t ruled out, but if it’s going to occur, our current constraints push it out to 80 billion years in the future. Find out what it would look like and how we’ll know!