Category: galaxies

Hubble Catches New Stars, Individually, Form…

Hubble Catches New Stars, Individually, Forming In Galaxies Beyond The Milky Way

“There are a massive variety of star-forming regions nearby, and Hubble’s new Legacy ExtraGalactic UV Survey (LEGUS) is now the sharpest, most comprehensive one ever. 

By imaging 50 nearby, star-forming spiral and dwarf galaxies, astronomers can see how the galactic environment affects star-formation.”

Within galaxies, new stars are going to be formed from the existing population of gas. But how that gas collapses and forms stars, as well as the types, numbers, and locations of the stars that will arise, is highly dependent on the galactic environment into which they are born. Dwarf galaxies, for example, tend to form stars when a nearby gravitational interaction triggers them. These bursts occur periodically, leading to multiple populations of stars of different ages. Spirals, on the other hand, form their new stars mostly along the lines traced by their arms, where the dust and gas is densest. Thanks to the Hubble Space Telescope, we’re capable of finding these stars and resolving them individually, using a combination of optical and ultraviolet data.

The best part? These are individually resolved stars from well outside our own galaxy: in 50 independent ones. Here’s what Hubble’s new LEGUS survey is revealing.

Ask Ethan: Will Future Civilizations Miss The …

Ask Ethan: Will Future Civilizations Miss The Big Bang?

“If intelligent life re-emerges in our solar system in a few billion years, only a few points of light will still be visible in the sky. What kind of theory of the universe will those beings concoct? It is almost certain to be wrong. Why do we think that what we can view now can lead us to a “correct” theory when a few billion years before us, things might have looked completely different?”

Incredibly, the Universe we know and love today won’t be the way it is forever. If we were born in the far future, perhaps a hundred billion years from now, we wouldn’t have another galaxy to look at for a billion light years: hundreds of times more distant than the closest galaxies today. Our local group will merge into a single, giant elliptical galaxy, and there will be no sign at all of young stars, of star-forming regions, of other galaxies, or even of the Big Bang’s leftover glow. If we were born in the far future, we might miss the Big Bang as the correct origin of our Universe. It makes one wonder, when you think about it in those terms, if we’re missing something essential about our Universe today? In the 13.8 billion years that have passed, could we already have lost some essential information about the history of our Universe?

And in the far future, might we see something that, as of right now, hasn’t yet grown to prominence? Let’s explore this and see what you think!

Astronomers Confirm Second Most-Distant Galaxy…

Astronomers Confirm Second Most-Distant Galaxy Ever, And Its Stars Are Already Old

“Scientists have just confirmed the second most distant galaxy of all: MACS1149-JD1, whose light comes from when the Universe was 530 million years old: less than 4% of its present age. But what’s remarkable is that we’ve been able to detect oxygen in there, marking the first time we’ve seen this heavy element so far back. From the observations we’ve made, we can conclude this galaxy is at least 250 million years old, pushing the direct evidence for the first stars back further than ever.”

When it comes to the most distant galaxies of all, our current set of cutting-edge telescopes simply won’t get us there. The end of the cosmic dark ages and the dawn of the first cosmic starlight is a mystery that will remain until at least 2020: when the James Webb Space Telescope launches. Using the power of a multitude of observatories, we’ve managed to find a gravitationally lensed galaxy whose light comes to us from over 13 billion years ago. But unlike previous galaxies discovered near that distance, we’ve detected oxygen in this one, allowing us to get a precise measurement and to estimate its age.

For the first time, we have evidence from galaxies, directly, that the Universe’s first stars formed no later than 250 million years after the Big Bang. Here’s how we know.

Ask Ethan: How Many Galaxies Have Already Disa…

Ask Ethan: How Many Galaxies Have Already Disappeared From Our Perspective?

“So how many earth observable galaxies have dropped out of sight? That is, how many galaxies (with the highest redshift) have disappeared from our point of view?”

When we look out at the distant reaches of space, there are some 2 trillion galaxies observable within our Universe. But our Universe is expanding, the expansion is accelerating, and light can only travel at the speed of light. Does that mean that galaxies are dropping out of sight?

There are two ways to look at this: from the point of view of not being able to see galaxies that we can presently see, and from the point of view of whether we can see the light those galaxies are emitting today, 13.8 billion years after the Big Bang? If we take the first definition, not only is the answer “zero,” but there will be trillions more galaxies revealed to us over time. But if we take the second, we find that most of the galaxies we can see today are already gone.

How many galaxies have already disappeared from our perspective? The cosmic implications should motivate us to get out there and explore while there’s still some good Universe left to go and see!

Hubble’s Greatest Discoveries Weren&rsqu…

Hubble’s Greatest Discoveries Weren’t Planned; They Were Surprises

“And if we head out beyond our own galaxy, that’s where Hubble truly shines, having taught us more about the Universe than we ever imagined was out there. One of the greatest, most ambitious projects ever undertaken came in the mid-1990s, when astronomers in charge of Hubble redefined staring into the unknown. It was possibly the bravest thing ever done with the Hubble Space Telescope: to find a patch of sky with absolutely nothing in it — no bright stars, no nebulae, and no known galaxies — and observe it. Not just for a few minutes, or an hour, or even for a day. But orbit-after-orbit, for a huge amount of time, staring off into the nothingness of empty space, recording image after image of pure darkness.

What came back was amazing. Beyond what we could see, there were thousands upon thousand of galaxies out there in the abyss of space, in a tiny region of sky.”

28 years ago today, the Hubble Space Telescope was deployed. Since that time, it’s changed our view of the Solar System, the stars, nebulae, galaxies, and the entire Universe. But here’s the kicker: almost all of what it discovered wasn’t what it was designed to look for. We were able to learn so much from Hubble because it broke through the next frontier, looking at the Universe in a way we’ve never looked at it before. Astronomers and astrophysicists found clever ways to exploit its capabilities, and the observatory itself was overbuilt to the point where, 28 years later, it’s still one of the most sought-after telescopes as far as observing time goes.

Hubble’s greatest discoveries weren’t planned, but the planning we did enabled them to become real. Here are some great reasons to celebrate its anniversary.

One Galaxy Cluster, Through Hubble’s E…

One Galaxy Cluster, Through Hubble’s Eyes, Can Show Us The Entire Universe

“There’s more gravity than the gas can provide, showing the presence of non-baryonic dark matter.

But all the mass, combined, contributes to gravitational lensing.

The bending of space stretches and magnifies the light from galaxies behind the cluster.

This is the whole purpose of the joint Hubble/Spitzer RELICS program, highlighted by this galaxy cluster.”

Want to see the most distant galaxy in the Universe? You don’t simply need the world’s greatest telescopes; you also need an assist from gravity. Galaxy clusters provide the largest gravitational sources in the Universe, thereby providing the largest natural magnification enhancements through gravitational lensing. While the internal dynamics of the galaxies tell us that there must be dark matter present, and that dark matter is something other than normal (atom-based) matter, the overall gravitational effects enhance any telescope-based views of the Universe. The joint Hubble/Spitzer RELICS program is imaging 41 of these massive galaxy clusters, hoping to magnify ultra-distant galaxies more distant than any we’ve ever seen before. When the James Webb Space Telescope comes online, these will be the places where our greatest target candidates for “most distant galaxy in the Universe” will come from.

The next step of our great cosmic journey is beginning right now. Come get a glimpse of the future for yourself!

This Is How The Milky Way Is Eating Our Galact…

This Is How The Milky Way Is Eating Our Galactic Neighbors

“New star formation is triggered by mutual gravitational interactions combined with the Milky Way’s tug.

The gas within these galaxies gets shunted into new clusters, including the local group’s largest star-forming region: 30 Doradus.

But these gravitational interactions also strip the gas away from these dwarfs, where the Milky Way will devour it.

The largest gas stream seems to connect both galaxies, but which cloud it originated from was a mystery.

Until, that is, scientists led by Andrew Fox looked at the absorption effects of this gas from background quasar light.”

While the visible Universe extends for tens of billions of light years, our local group of galaxies extends for only a few million. Around our own Milky Way are a handful of dwarf galaxies, including two bright ones: the Large and Small Magellanic Clouds. These two galaxies contain large numbers of young stars, show evidence of hot, glowing gas, and are destined to be devoured by our Milky Way in cosmically short order. But until that happens, they’re engaged in a cosmic tug-of-war with one another, battling to expel the gas from each other and capture it for themselves. Because the Milky Way is nearby, the expelled gas is getting stretched and drawn into our own galaxy, but which cloud, the Large or the Small, did it arise from?

Owing to new work by a Hubble team led by Andrew Fox, we finally know it’s the Small Magellanic Cloud. Here’s how, and here’s what it means for science.

Astronomers Discover Exactly How Galaxies Die

Astronomers Discover Exactly How Galaxies Die

“Our Milky Way contains large star-forming regions, mostly along its spiral arms, indicating stellar life. But other, mostly elliptical galaxies, stopped forming stars many billions of years ago. These galaxies are called red-and-dead, because they don’t have any hot, young, blue stars associated with recent star formation. Since the hottest, bluest stars burn through their fuel the fastest, an intrinsic red color is evidence that no new stars have formed for a long time.”

With hundreds of billions of stars burning inside a typical galaxy, it seems like a stretch to call any such object already “dead.” But if you aren’t actively forming new stars, and you don’t have the material in you to form new stars in the future, “dead” is exactly what you are, whether you realize it or not. We’ve had a number of theories, for a long time, as to why a galaxy could lose its gas and burn out, but for the first time, we’ve discovered one in the nearby Universe. Just 240 million light years away, the galaxy NGC 1277 has a unique set of circumstances:

  • it’s moving very quickly through the intra-cluster medium,
  • it contains an ultra-massive black hole at its core,
  • and both its stars and globular clusters are overwhelmingly red.

It looks as though it hasn’t formed new stars in some 10 billion years, making it the oldest, deadest galaxy we’ve ever seen up close!

Come learn all about it, and what it means for the deaths of galaxies, on this edition of Mostly Mute Monday!

Why Isn’t Our Universe Perfectly Smooth? “Thi…

Why Isn’t Our Universe Perfectly Smooth?

“This seems, at first glance, to pose a tremendous problem. If inflation stretches space to be flat, uniform, and smooth, indistinguishably so from perfection, then how did we arrive at a clumpy Universe today? Both Newton’s and Einstein’s theories of gravity are unstable against imperfections, meaning that if you start with an almost-but-not-quite perfectly smooth Universe, over time, the imperfections will grow and you’ll wind up with structure. But if you start with perfect smoothness, with literally no imperfections, you’re going to remain smooth forever. Yet this doesn’t jibe with the Universe we observe at all; it had to have been born with imperfections in its matter density.”

One of the great successes of cosmic inflation is to set up the initial conditions for the Big Bang that we knew we needed, including giving us a Universe that had the same temperature and density everywhere. But this couldn’t have been a perfect smoothness, otherwise we’d never have formed stars, galaxies, and the cosmic large-scale structure we observe today in the space we inhabit. So how did we come to be clumpy? The Universe must have been born with initial imperfections in them. If you treat inflation as a classical field, you’ll never get them that way, but if you recognize that it’s a quantum field, with the associated quantum fluctuations that we know must be there, the whole story changes. Not only does inflation give you these cosmic imperfections, but it gives you the full spectrum of them that you can then go check against observations.

These predictions were made in the early 1980s, and were verified decades later by COBE, WMAP, and Planck. It’s a huge victory for a great scientific theory!

The Earliest Galaxies Spin Just Like Our Milky…

The Earliest Galaxies Spin Just Like Our Milky Way, Defying Expectations

“As our data sets improve, we should begin to measure the internal motions of large numbers of galaxies like this, which will answer many questions and raise others. Do most/all galaxies at these early stages rotate in a whirlpool-like plane? Is there a variety and multiple sets of populations that exhibit different behaviors? What are the actual effects of gas infall, supernovae, and small-scale motions? What is the velocity profile of these rotation curves, and can they teach us anything about the interplay of radiation, normal matter, and dark matter?

While we hope to learn these answers, we can now ask these questions sensibly in the aftermath of having measured the movement and internal motions of a galaxy so far away. At least for the first two, they rotate very similarly to their much older cousins, a quite unexpected result. Thanks to ALMA, we’re taking those coveted next steps into the final frontier.”

It wasn’t supposed to be this way. When you form galaxies in the very young Universe, it’s supposed to be a chaotic, turbulent place. Sure, you have gravitation, pulling matter in and creating a pancake-like shape. But then you form stars, and everything goes haywire. Supernovae go off, gas falls in, protogalaxies merge and get swallowed, motions get stirred up, and turbulence should permeate the galaxy. It ought to take billions of years for them to quiet down into a Milky Way-like whirlpool. Well, for the first time, owing to ALMA and Renske Smit’s team, the internal motions of galaxies less than a billion years old were measured, and – surprise! – their movement is smooth and not chaotic at all.

They’re less than a billion years old. And, thanks to ALMA observing them, they might finally pave the way to understand how galaxies form altogether.