Category: GN-z11

We Have Now Reached The Limits Of The Hubble S…

We Have Now Reached The Limits Of The Hubble Space Telescope

“Finally, there are the wavelength limits as well. Stars emits a wide variety of light, from the ultraviolet through the optical and into the infrared. It’s no coincidence that this is what Hubble was designed for: to look for light that’s of the same variety and wavelengths that we know stars emit.

But this, too, is fundamentally limiting. You see, as light travels through the Universe, the fabric of space itself is expanding. This causes the light, even if it’s emitted with intrinsically short wavelengths, to have its wavelength stretched by the expansion of space. By the time it arrives at our eyes, it’s redshifted by a particular factor that’s determined by the expansion rate of the Universe and the object’s distance from us.

Hubble’s wavelength range sets a fundamental limit to how far back we can see: to when the Universe is around 400 million years old, but no earlier.”

The Hubble Space Telescope, currently entering its 30th year of service, has literally revolutionized our view of the Universe. It’s shown us our faintest and most distant stars, galaxies, and galaxy clusters of all. But as far back as it’s taken us, and as spectacular as what it’s revealed, there is much, much more Universe out there, and Hubble is at its limit.

Here’s how far we’ve come, with a look to how much farther we could yet go. It’s up to us to build the tools to take us there.

This Is Why Hubble Can’t See The Very Fi…

This Is Why Hubble Can’t See The Very First Galaxies

“By observing dark, empty patches of sky, it reveals ancient galaxies without nearby interference.

When distant galaxy clusters are present, these massive gravitational clumps behave as natural magnifying lenses.

The most distant observed galaxies have their light bent, distorted, and amplified along the journey.

Hubble discovered the current cosmic record-holder, GN-z11, via lensing.

Its light arrives from 407 million years after the Big Bang: 3% of the Universe’s current age.”

No astronomical observatory has revolutionized our view of the Universe quite like NASA’s Hubble Space Telescope. With the various servicing missions and instrument upgrades that have taken place over its lifetime, Hubble has pushed back the cosmic frontier of the first stars and galaxies to limits never before known. Yet there must be galaxies before them; some of the most distant Hubble galaxies have stars in them that push back the time of the first galaxies to just 250 million years after the Big Bang. Yet Hubble is physically incapable of seeing that far. Three factors: cosmic redshift, warm temperatures, and light-blocking gas, prevent us from going much beyond what we’ve already seen. In fact, we’re remarkably lucky to have gotten as distant as we have. 

Find out why Hubble can’t see the very first galaxies, and why we need the James Webb space telescope!

When Will We Break The Record For Most Distant…

When Will We Break The Record For Most Distant Galaxy Ever Discovered?

“Finally, beyond a certain distance, the Universe hasn’t formed enough stars to reionize space and make it 100% transparent.

We only perceive galaxies in a few serendipitous directions, where copious star-formation occurred.
In 2016, we fortuitously discovered GN-z11 at a redshift of 11.1: from 13.4 billion years ago.
But recent, indirect evidence suggests stars formed at even greater redshifts and earlier times.“

It was only a couple of years ago that we set the current record for where the most distant galaxy is: from 13.4 billion years ago, when the Universe was just 3% its current age. This record is unlikely to be broken with our current set of observatories, as discovering a galaxy this distant required a whole bunch of unlikely, serendipitous phenomena to line up at once. But in 2020, the James Webb Space Telescope will launch: an observatory optimized for finding exactly the kinds of galaxy that push past the limits of what Hubble can do. We fully expect to not only break the record for most distant galaxy ever discovered, but to learn, for the first time, exactly where and when the first galaxies in the Universe truly formed.

Until then, it’s lots of fun to speculate as to when and where they might be, but it will take the observations of a lifetime to smash this cosmic record!