Category: NASA

One Simple Reason Why Touching The Sun Is So H…

One Simple Reason Why Touching The Sun Is So Hard

“It doesn’t simply take a suite of clever instruments to measure the Sun up close, although the Parker Solar Probe has those. It isn’t enough to have a thick, carbon-composite shield to withstand the incredible radiation and temperatures present in close proximity to the Sun, although the Parker Solar Probe has those, too. It also requires an incredibly complex, intricate plan to insert yourself into a stable orbit that’s capable of bringing you closer to the Sun than anything else ever has before.”

If there’s one law of physics that most people know, it’s Newton’s first law. Objects at rest remain at rest, and objects in motion remain in uniform motion, unless they’re acted on by an outside force. This applies not just to straight-line motions, but to orbiting motions as well. It isn’t just momentum that’s conserved in physics, but angular (or rotational) momentum, too. In order to touch the Sun, the Parker Solar Probe has to somehow get rid of a tremendous amount of angular momentum, and rockets alone aren’t powerful enough to do it. The trick? You have to use the other planets in the Solar System, and give up your angular momentum to them. The Parker Solar Probe will pass close by Venus a record seven times in order to do this, coming within less than 4 million miles of the Sun when they’re all over.

We’ve never touched the Sun before, but thanks to new technology, an ambitious mission, and an incredible flight plan, we’re about to accomplish what was once unthinkable.

First Stars Formed No Later Than 250 Million Y…

First Stars Formed No Later Than 250 Million Years After The Big Bang, With Direct Proof

“We see MACS1149-JD1 as it was 530 million years after the Big Bang, while inside, it has a special signature: oxygen. Oxygen is only produced by previous generations of stars, indicating that this galaxy is already old.

MACS1149-JD1 was imaged with microwave (ALMA), infrared (Spitzer), and optical (Hubble) data combined.

The results indicate that stars existed nearly 300 million years before our observations.”

One of the great quests of astronomers today is to measure and locate the very first stars in the Universe. As far back as Hubble can see, to when the Universe was just 3-5% its current age, the Universe is still full of galaxies, even though they’re smaller and bluer than the ones we have today. But within these galaxies, we can also find evidence that the stars in there aren’t the very first ones; they contain evidence for prior generations of stars in their spectral signatures. From the second-most distant galaxy ever discovered, itself just 530 million years after the Big Bang, we see evolved stars. They indicate that the very first ones formed no later than 250 million years after the Big Bang.

The James Webb Space Telescope will be able to see that far! In less than 3 years, we’ll peer beyond where we’ve ever seen before. And there will no doubt be something breathtaking to look at.

The Pillars Of Creation Haven’t Been Des…

The Pillars Of Creation Haven’t Been Destroyed, Say New NASA Images

“Near-infrared observations can see through the dust, revealing a glittering tapestry of young, hot stars inside. But at longer wavelengths, cooler-temperature objects show up. Mid-infrared light revealed that a diffuse heat source was warming the nebula, suggesting a recent supernova. While the far-infrared showed where the gas is evaporating, we needed X-rays to know if the pillars were being destroyed.”

In a stunning new release, NASA’s Chandra X-ray observatory has put out a wide-field view of a large portion of the Eagle Nebula, including the famed Pillars of Creation. All told, some 1,700 X-ray sources were identified, perhaps 2/3rds of which are inside the nebula. There are proto-stars, young stars, and stellar corpses. But conspicuously missing from the entire field-of-view is any evidence of a supernova remnant. In 2007, infrared data from Spitzer suggested that there may have been a recent supernova, and hence the pillars may already have been destroyed. The new Chandra data weighs in on that, giving a definitive “no” for an answer.

Come see the incredible suite of images and learn about the science inside this cosmic beauty, on today’s Mostly Mute Monday!

The Brightest Galaxy In The Universe Is Surp…

The Brightest Galaxy In The Universe Is Surprisingly Young And Tiny

“In 2015, a new record was set for the brightest known galaxy, thanks to observations with the WISE telescope. Supermassive black holes power Extremely Luminous Infrared Galaxies. The brightest ones shine 10,000+ times as bright as our Milky Way.Although the Universe is just 10% of its current age and the galaxy is even smaller than ours, it outshines them all.”

I want you to close your eyes and imagine the Milky Way: a typical galaxy. Now, imagine a different galaxy, the brightest one you can think up. What does it look like? How do you imagine it?

Do you imagine something large, massive, with hundreds or even thousands of times as many stars? Do you imagine something that’s built itself up over billions of years? Well if that’s what you imagined, prepare to be shocked! The brightest ones of all are young, ultra-distant, and even smaller than our own galaxy!

Here’s the brightest galaxy in the Universe, which is turbulent, dusty, and looks nothing like you might expect!

NASA’s Next Flagship Mission May Be A Cr…

NASA’s Next Flagship Mission May Be A Crushing Disappointment For Astrophysics

“This is NASA. This is the pre-eminent space agency in the world. This is where science, research, development, discovery, and innovation all come together. The spinoff technologies alone justify the investment, but that’s not why we do it. We are here to discover the Universe. We are here to learn all that we can about the cosmos and our place within it. We are here to find out what the Universe looks like and how it came to be the way it is today.

It’s time for the United States government to step up to the plate and invest in fundamental science in a way the world hasn’t seen in decades. It’s time to stop asking the scientific community to do more with less, and give them a realistic but ambitious goal: to do more with more. If we can afford an ill-thought-out space force, perhaps we can afford to learn about the greatest unexplored natural resource of all. The Universe, and the vast unknowns hiding in the great cosmic ocean.”

While the Trump administration just proposed a new branch of the military, a “space force” if you will, NASA has just demanded that every one of the proposed astrophysics flagship missions abandon their large ambitions and present a scaled-down, sub-$5 billion version of their proposal. That means smaller telescopes, reduced capabilities, and less knowledge that will be revealed about the Universe. Every single one of the four will suffer from this, but the biggest losers may be us. In terms of science, society, spinoffs, and civilization, we’ll all be poorer if we fail to invest in something that truly makes a difference in this world.

Why grandstand when you can literally grandly stand where no human has stood before: at the frontiers of knowledge? It’s time to invest in something that matters.

The EmDrive, NASA’s ‘Impossible&rs…

The EmDrive, NASA’s ‘Impossible’ Space Engine, Really Is Impossible

“Tajmar’s results are exactly what you’d expect for the systematic error explanation: with a properly shielded apparatus, with no additional electromagnetic fields induced by the wires, there is no observed thrust at any power. They conclude that these induced fields by the electrical wires, visibly present in the other setups, are the likely culprit for the observed, unexplained thrust:

‘Our results show that the magnetic interaction from not sufficiently shielded cables or thrusters are a major factor that needs to be taken into account for proper µN thrust measurements for these type of devices.’

To the best of our knowledge, then, rockets will still require propellant.

The EmDrive isn’t a reactionless drive at all, and all the laws of physics should still work. In short, we fooled ourselves.”

For years, many tinkerers and inventors have been claiming that some sort of electromagnetic cavity, e.g., the EmDrive, can create a reactionless drive. That is, they claim they can change the momentum of a rocket without any sort of change-in-momentum of anything else, violating Newton’s action-reaction law. Needless to say, much like perpetual motion, physicists are largely skeptical. But until now, we hadn’t yet found why they were achieving the results that they did. However, a new source of error was just uncovered: magnetic fields originating from the cables that power the device. Properly set up the device, away from cables and loops of wires, as Martin Tajmar’s team did, and guess what: your ‘anomalous thrust’ disappears.

The EmDrive, billed as NASA’s impossible space engine, really was too good to be true.

Is Humanity Ignoring Our First Chance For A Mi…

Is Humanity Ignoring Our First Chance For A Mission To An Oort Cloud Object?

“In 2003, scientists discovered an object beyond Neptune that was unlike any other: Sedna. While there were larger dwarf planets beyond Neptune, and comets that would travel farther from the Sun, Sedna was unique for how far it always remained from the Sun. It always remained more than twice as distant from the Sun as Neptune was, and would achieve a maximum distance nearly 1,000 times as far as the Earth-Sun distance. And despite all that, it’s extremely large: perhaps 1,000 kilometers in diameter. It’s the first object we’ve ever found that might have originated from the Oort cloud. And we’ll only get two chances if we want to send a mission there: in 2033 and 2046. Right now, there isn’t even a proposed NASA mission looking at the possibility. If we do nothing, the opportunity will simply pass us by.”

Out beyond the eight planets of our Solar System, a large number of regions, all containing frozen objects, are theorized to exist. Innermost is the Kuiper belt, consisting of a wide variety of bodies, but all of which come quite close to Neptune’s orbit and feel its gravitational influence. Beyond that are the scattered disk objects: objects kicked by one of the gas giants out to greater distances. Beyond that are the detached objects, which have undergone multiple gravitational interactions and no longer come close to Neptune. And finally, there are the sednoids: objects that never come within double the Sun-Neptune distance of the Sun. There are only two known, and the first one, Sedna, is so large that it’s surely a dwarf planet. With an aphelion of approximately 1000 A.U., it may well have an origin in the inner Oort cloud, which is hitherto only theorized.

Fantastically, we have two launch windows for a mission to Sedna, if we were interested in going. Why are we not clamoring for this mission, and for the potential chance to explore the Oort cloud for the first time?!

Hubble’s Greatest Discoveries Weren&rsqu…

Hubble’s Greatest Discoveries Weren’t Planned; They Were Surprises

“And if we head out beyond our own galaxy, that’s where Hubble truly shines, having taught us more about the Universe than we ever imagined was out there. One of the greatest, most ambitious projects ever undertaken came in the mid-1990s, when astronomers in charge of Hubble redefined staring into the unknown. It was possibly the bravest thing ever done with the Hubble Space Telescope: to find a patch of sky with absolutely nothing in it — no bright stars, no nebulae, and no known galaxies — and observe it. Not just for a few minutes, or an hour, or even for a day. But orbit-after-orbit, for a huge amount of time, staring off into the nothingness of empty space, recording image after image of pure darkness.

What came back was amazing. Beyond what we could see, there were thousands upon thousand of galaxies out there in the abyss of space, in a tiny region of sky.”

28 years ago today, the Hubble Space Telescope was deployed. Since that time, it’s changed our view of the Solar System, the stars, nebulae, galaxies, and the entire Universe. But here’s the kicker: almost all of what it discovered wasn’t what it was designed to look for. We were able to learn so much from Hubble because it broke through the next frontier, looking at the Universe in a way we’ve never looked at it before. Astronomers and astrophysicists found clever ways to exploit its capabilities, and the observatory itself was overbuilt to the point where, 28 years later, it’s still one of the most sought-after telescopes as far as observing time goes.

Hubble’s greatest discoveries weren’t planned, but the planning we did enabled them to become real. Here are some great reasons to celebrate its anniversary.

The 19 Small Ways That NASA Will Try To Save T…

The 19 Small Ways That NASA Will Try To Save The Earth

“The key to adapting to a changing world, not just as individuals but as the human race, requires us to use the best tools and information at our disposal. That means paying attention to what the Earth is doing, both naturally and artificially, and using the best data available to drive our policy decisions. These 19 future missions represent the short-and-medium-term roadmap for NASA Earth Science, and every one of these missions is currently slated to go forward, as long as there aren’t unexpected cuts in the future. This Earth Day, don’t just celebrate our planet only to forget about it; keep in mind what we’re doing to learn about our world and why it’s valuable. This planet is the only Earth we’ve got, and it’s up to us to be good stewards of this world. Without quality scientific information on which to base good decisions, from a global perspective, we’d be nothing more than animals.”

When people think of NASA, they think of spaceflight, of technology, and of science. But most of the science they think of is astrophysics or planetary science, not Earth Science. Well, that’s foolish; Earth Science is one of the Science Mission Directorate’s four major realms of study, as we can learn things about our world from the air and from space that we cannot hope to learn from surface investigations alone. Over the coming months and years, NASA has 19 new missions slated to help better investigate and understand the Earth, including our weather, climate, pollution, CO2, temperature, and more. If you care about accurate information, you’ll start to understand why all of these missions are indispensable to a scientifically-minded society.

Come learn about the 19 small ways, from missions small to large, that NASA’s Earth Science directorate will try and help save the Earth.

NASA Kepler’s Scientists Are Doing What …

NASA Kepler’s Scientists Are Doing What Seems Impossible: Turning Pixels Into Planets

“It isn’t the image itself that gives you this information, but rather how the light from image changes over time, both relative to all the other stars and relative to itself. The other stars out there in our galaxy have sunspots, planets, and rich solar systems all their own. As Kepler heads towards its final retirement and prepares to be replaced by TESS, take a moment to reflect on just how it’s revolutionized our view of the Universe. Never before has such a small amount of information taught us so much.”

When you think about exoplanets, or planets around stars other than the Sun, you probably visualize them like we do our own Solar System. Yet direct images of these worlds are exceedingly rare, with less than 1% of the detected exoplanets having any sort of visual confirmation. The way most planets have been found has been from the Kepler spacecraft, which gives you the very, very unimpressive image of the star you see featured at the top. Yet just by watching that star, the light coming from it, and the rest of the field-of-view over time, we can infer the existence of sunspots, flares, and periodic “dips” in brightness that correspond to the presence of a planet. In fact, we can figure out the radius, orbital period, and sometimes even the mass of the planet, too, all from this single point of light.

How do we do it? There’s an incredible science in turning pixels into planets, and that’s what made NASA’s Kepler mission so successful!