Category: nuclear fusion

Our Sun Is Lighter Than Ever, And The Problem …

Our Sun Is Lighter Than Ever, And The Problem Is Getting Worse

“As time goes on, the amount of mass lost by the Sun will increase, particularly as it enters the giant phase of its life. But even at this relatively steady rate, the growth of helium in the Sun’s core means that we will heat up here on planet Earth. After about 1-to-2 billion years, the Sun will be burning hot enough that Earth’s oceans will boil away entirely, making liquid water impossible on the surface of our planet. As the Sun gets lighter and lighter, it will counterintuitively get hotter and hotter. Our planet has already used up approximately three-quarters of the time we have where Earth is habitable. As the Sun continues to lose mass, humanity and all life on Earth approaches its inevitable fate. Let’s make these last billion-or-so years count.”

As the Sun burns through its nuclear fuel, it loses mass in not one, but two ways. Sure, in its core, it’s fusing hydrogen in a chain reaction into helium, with the reduction in mass corresponding to a gain in energy: the energy that powers the Sun and gives life to all the planets. But it also blows off particles, including electrons, protons, and atomic nuclei, in a phenomenon called the solar wind. Even though more massive stars burn hotter and brighter than less massive ones, the Sun, perhaps paradoxically, will increase in temperature and luminosity as it loses mass to these two processes. The Sun is getting lighter and lighter, and the problem of its increasing energy output will eventually destroy all life on Earth.

Here’s how fast the Sun is losing mass, and what this means for the inevitable fate of everything that could ever live here on Earth.

This Is How North Korea Will Develop A Hydroge…

This Is How North Korea Will Develop A Hydrogen Bomb

“Although we have no proof of this, the recent nuclear tests indicate that North Korea has at least weapons-grade materials and possible super-weapons-grade. To build a hydrogen (fusion) bomb, all you need is for a fission bomb to properly surround and compress, after the fission bomb detonates, a pellet of fusible material. The fusible material usually simply consists of two different isotopes of hydrogen: deuterium and tritium.

Frighteningly, arguably the best way to produce tritium is to run a water-cooled nuclear reactor. North Korea has one; it has undergone testing already this year and is potentially slated for activation in 2019. This method of creating a fusion bomb has been around since the 1950s, and represents one of the single greatest existential threats to all of humanity.”

In 2006, North Korea detonated what appeared to be a nuclear bomb, which we were able to detect through a worldwide network of seismology stations.Since then, 5 additional tests have been performed, increasing in power and demonstrating progressively more advanced nuclear capabilities. Their claims to have detonated a hydrogen bomb are not supported by the data, but there is a clear path to its development. There is currently no plan in place to mitigate this existential threat to the entire world, and in the aftermath of the Trump-Kim summit, things look like they’re accelerating towards a more dangerous, nuclearized world.

This is how North Korea will develop a hydrogen bomb if we continue to do exactly what we’re doing. We may want to change that, ASAP.

The Sun’s Energy Doesn’t Come From Fusing Hydrogen…

The Sun’s Energy Doesn’t Come From Fusing Hydrogen Into Helium (Mostly)

“It might surprise you to learn that hydrogen-fusing-into-helium makes up less than half of all nuclear reactions in our Sun, and that it’s also responsible for less than half of the energy that the Sun eventually outputs. There are strange, unearthly phenomena along the way: the diproton that usually just decays back to the original protons that made it, positrons spontaneously emitted from unstable nuclei, and in a small (but important) percentage of these reactions, a rare mass-8 nucleus, something you’ll never find naturally occurring here on Earth. But that’s the nuclear physics of where the Sun gets its energy from, and it’s so much richer than the simple fusion of hydrogen into helium!”

Ask anyone where the Sun (or any star) gets its energy from, and most people will correctly answer “nuclear fusion.” But if you ask what’s getting fused, most people – including most scientists – will tell you that the Sun fuses hydrogen into helium, and that’s what powers it. It’s true that the Sun uses hydrogen as its initial fuel, and that helium-4 is indeed the end product, but the individual reactions that take place to turn hydrogen into helium are surprisingly diverse and intricate. There are actually four major reactions that take place in the sun: fusing two protons into deuterium, fusing deuterium and a proton into helium-3, fusing two helium-3 nuclei into helium-4, and fusing helium-3 and helium-4 in a chain reaction to produce two helium-4 nuclei. Note that only one of those reactions actually turns hydrogen into helium, and that’s not what makes up either the majority of reactions or the majority of the Sun’s energy!

The Sun fuses hydrogen into helium, but that’s not the only thing that powers it. Come find out how the Sun really works today!