Category: pressure

The Surprising Reason Why Neutron Stars Don&rs…

The Surprising Reason Why Neutron Stars Don’t All Collapse To Form Black Holes

“The measurements of the enormous pressure inside the proton, as well as the distribution of that pressure, show us what’s responsible for preventing the collapse of neutron stars. It’s the internal pressure inside each proton and neutron, arising from the strong force, that holds up neutron stars when white dwarfs have long given out. Determining exactly where that mass threshold is just got a great boost. Rather than solely relying on astrophysical observations, the experimental side of nuclear physics may provide the guidepost we need to theoretically understand where the limits of neutron stars actually lie.”

If you take a large, massive collection of matter and compress it down into a small space, it’s going to attempt to form a black hole. The only thing that can stop it is some sort of internal pressure that pushes back. For stars, that’s thermal, radiation pressure. For white dwarfs, that’s the quantum degeneracy pressure from the electrons. And for neutron stars, there’s quantum degeneracy pressure between the neutrons (or quarks) themselves. Only, if that last case were the only factor at play, neutron stars wouldn’t be able to get more massive than white dwarfs, and there’s strong evidence that they can reach almost twice the Chandrasekhar mass limit of 1.4 solar masses. Instead, there must be a big contribution from the internal pressure each the individual nucleon to resist collapse.

For the first time, we’ve measured that pressure distribution inside the proton, paving the way to understanding why massive neutron stars don’t all form black holes.

Ask Ethan: How Can Worlds That Never Get Above Freezing Have…

Ask Ethan: How Can Worlds That Never Get Above Freezing Have Liquid Water?

“I was reading about Saturn’s moon Enceladus, and how scientists believe it has liquid water oceans beneath its water-ice crust. And yet I also read that the warmest surface temperatures are -90 celsius. How can this moon have liquid water? […] At such cold temperatures and low pressures it seems Enceladus can have water ice and water gas but not liquid. What am I missing?”

Here on Earth, water can easily exist in all three phases of matter: solid, liquid, and gas. The reason for this is simple: Earth has the right range of temperatures and pressures to experience not just the common solid and gas phases, but the liquid water phase, too. In the outer Solar System, worlds like Europa, Enceladus, and Pluto are too far from the Sun to ever reach surface temperatures high enough to create a liquid phase; it seems that water is a no-go. But there must be subsurface oceans on these worlds! Not only is there geological evidence of an ocean beneath a thick layer of ice, but on some worlds, like Enceladus, we can actually see large plumes of liquid water ejected hundreds of kilometers above the surface, like some sort of planet-scale geyser. While the increased pressure from the ice plays a role, it isn’t enough on its own; there must be other factors, too.

How do worlds that never get above freezing actually come to have liquid water on their surfaces? Find out on this week’s Ask Ethan!