Category: radioactive decay

This One Award Was The Biggest Injustice In Nobel Prize History

“Every October, the Nobel foundation awards prizes celebrating the greatest advances in numerous scientific fields. With a maximum of three winners per prize, many of history’s most deserving candidates have gone unrewarded. However, the greatest injustices occurred when the scientists behind the most worthy contributions were snubbed.”

Imagine this scenario: you work hard all your life investigating some aspect of reality with as much scientific rigor as anyone ever has. You make a great breakthrough working on a very hard problem, and you push your scientific field forward in a novel, important, and unprecedented way. And then, when the time comes to evaluate the quality and impact of your work, it’s chosen as being Nobel-worthy. 

Only, when they announce the winners of the Nobel Prize, your name isn’t called at all. Instead, other scientists are awarded the prize, while both your name and your decisive work are omitted from every aspect of the award. Sounds like a pretty big injustice, yes? 

Well, it’s happened to many people over the years, including Chien-Shiung Wu in perhaps the greatest injustice of them all. Come get the full story on the eve of the 2019 Nobel Prize in physics being awarded!

Ask Ethan: Did Some Of Earth’s Meteorites Originate Beyond The Solar System?

“The passage of ‘Oumuamua through our planetary plane got me wondering about something. Most meteorites found on Earth are dated back as far as 4.6 billion years, or the age of our solar system. What if a meteorite was found that had originated in a another, much older planetary system. How would an eight billion year old piece of an alien system be recognized, or would it? Maybe some of the space rocks being found on Earth are like ‘Oumuamua, visitors from another star.”

If you came to me a century ago, right around 1900, there would have only been a few hundred meteorites that we knew of. Almost all of them, in fact, would have been iron (or stony-iron) meteorites, as these are the most easily identifiable as not being of Earth’s origin. But wow, how science has advanced! We now perform physical, chemical, and isotope abundance tests on meteorites. Over 1,000 have been associated with observed falls, and nearly 60,000 have been discovered in total. Most of them aren’t iron-like, and many of them come from other worlds in our Solar System, including the Moon and Mars. Most impressively, though, we have an origin-independent way to determine their age: through radioactive isotope decay.

If meteorite originated from beyond our Solar System, including from an older system, its isotopes would give it away. Here’s how we’re doing that science today!

Ask Ethan: How Do We Know The Age Of The Solar System?

“How do we know the age of our solar system? […] I have a loose grasp on the concept of dating the time elapsed since a rock was liquid, but 4.5 Billion years is roughly how long ago Theia hit proto-Earth liquefying a massive amount of everything. […] How do we know we’re actually dating the solar system and not just finding dozens of ways to date the Theia collision?”

You’ve probably heard the estimates before: that the Earth, the Sun, and the rest of the Solar System are all about 4.5 or 4.6 billion years old. But why be so imprecise? We don’t have to be! In fact, we know that there are slight variations, and based on the fact that we think that the Earth-Moon system formed from a giant impact tens of millions of years after the rest of the Solar System did, we shouldn’t get the same answer for everything! It turns out that we’ve now advanced to the point where we can actually give answers that are extremely accurate: the Earth-Moon system should be 4.51 billion years old; the oldest meteorites show an age for the rest of the Solar System of 4.568 billion years, and the Sun may be a little older at 4.6 billion years.

How do we know? The science of radioactive decay holds the answer, and it’s a lot more complex, but a lot more well-understood, than you might think!