Category: science

Photo

Photo

Photo

Photo

Photo

Photo

Photo

Photo

Ye, I forgot, we also have Instagram with the …

Ye, I forgot, we also have Instagram with the original content -> here

How Do We Know How Small An Elementary Particl…

How Do We Know How Small An Elementary Particle Is?

“But here’s the thing: we don’t know that this is true. Sure, the Standard Model says that this is the way that things are, but we know that the Standard Model doesn’t give us the final answer to everything. In fact, we know that at some level, the Standard Model must break down and be wrong, because it doesn’t account for gravity, dark matter, dark energy, or the preponderance of matter (and not antimatter) in the Universe.

There has to be something out there more to nature than this. And maybe it’s because the particles that we think are fundamental, point-like, and indivisible today actually aren’t. Perhaps, if we go to high-enough energies and small-enough wavelengths, we’ll be able to see that at some point, between our current energy scales and the Planck energy scale, there’s actually more to the Universe than we presently know.”

Are the fundamental particles that we know of truly fundamental? Are they point-like entities, with no finite size, no internal structure, and no capacity to ever be split apart into smaller entities? According to the Standard Model, they are. But observationally, we know that the Standard Model isn’t all that there is. Moreover, we’ve got a long way to go (some 16 orders of magnitude) from our present experimental limits to the Planck scale, and what we think of as “fundamental” could undergo a revolution at any place, without any warning, if only we dare to look.

Right now, the particles we know of appear fundamental down to a limit of about 10^-19 meters, but it’s a long way down to forever. Here’s what we know today.

Regular

Friend: Is your cat alive?

Schrödinger:

Regular

So if noble gases do not bond, are antisocial people made entirely of them?

Ask Ethan: What Has TESS Accomplished In Its F…

Ask Ethan: What Has TESS Accomplished In Its First Year Of Science Operations?

“When it’s a bright, sunny day and you want to see an object in the sky that’s very close to the Sun, what do you do? You hold up a finger (or your whole hand) and block out the Sun, and then look for the nearby object that’s much intrinsically fainter than the Sun. This is exactly what telescopes equipped with coronagraphs do.

With the next generation of telescopes, this will enable us to finally directly-image planets around the closest stars to us, but only if we know where, when, and how to look. This is exactly the type of information that astronomers are gaining from TESS. By the time the James Webb Space Telescope launches in 2021, TESS will have completed its first sweep of the entire sky, providing a rich suite of tantalizing targets suitable for direct imaging. Our first picture of an Earth-like world may well be close on the horizon. Thanks to TESS, we’ll know exactly where to look.”

NASA’s TESS has completed its first year of science operations, where it’s just finished surveying the entire southern celestial hemisphere. With 13 separate observations of 27 days apiece, it’s managed to find over 800 candidate planets, including some spectacular examples of planetary systems that are unlike any we’ve ever seen before.

But the real power of TESS is that it tells us where to look to directly image Earth-sized and super-Earth-sized worlds around stars beyond our own. Find out what we’ve learned, so far, today.

This Is Why Two Higgs Bosons Don’t Have …

This Is Why Two Higgs Bosons Don’t Have The Same Mass As One Another

“In this quantum Universe, every particle will have properties that are inherently uncertain, as many of the measurable properties are changed by the act of measurement itself, even if you measure a property other than the one you wish to know. While we might talk about photon or electron uncertainties most commonly, some particles are also unstable, which means their lifetime is not pre-determined from the moment of their creation. For those classes of particles, their inherent energy, and therefore their mass, is inherently variable, too.

While we might be able to state the mass of the average unstable particle of a particular variety, like the Higgs boson or the top quark, each individual particle of that type will have its own, unique value. Quantum uncertainty can now be convincingly extended all the way to the rest energy of an unstable, fundamental particle. In a quantum Universe, even a property as basic as mass itself can never be set in stone.”

Create an electron, and there will be a certain set of properties that you’ll know for certain, irrespective of any quantum uncertainty. You’ll know its mass, its electric charge, its intrinsic angular momentum, and many other properties as well. But that’s because the electron itself is a fundamentally stable particle: it’s lifetime is infinite, with no uncertainty. This isn’t true for many of the particles of the Standard Model, though, with the heaviest particles like the Higgs boson, the W and Z bosons, and the top quark having the shortest lifetime. Well, there’s also an energy-time uncertainty relation, and that means that the shorter your lifetime is, the bigger your inherent uncertainty in your energy is. Now, combine that with the knowledge that E = mc^2, and what do you get? 

An inherently uncertain mass. Yes, it’s true: every top quark you create has a unique mass that’s different from every other top quark. Come find out the science behind this remarkable property of nature!