Category: science

NASA’s Next Flagship Mission May Be A Cr…

NASA’s Next Flagship Mission May Be A Crushing Disappointment For Astrophysics

“This is NASA. This is the pre-eminent space agency in the world. This is where science, research, development, discovery, and innovation all come together. The spinoff technologies alone justify the investment, but that’s not why we do it. We are here to discover the Universe. We are here to learn all that we can about the cosmos and our place within it. We are here to find out what the Universe looks like and how it came to be the way it is today.

It’s time for the United States government to step up to the plate and invest in fundamental science in a way the world hasn’t seen in decades. It’s time to stop asking the scientific community to do more with less, and give them a realistic but ambitious goal: to do more with more. If we can afford an ill-thought-out space force, perhaps we can afford to learn about the greatest unexplored natural resource of all. The Universe, and the vast unknowns hiding in the great cosmic ocean.”

While the Trump administration just proposed a new branch of the military, a “space force” if you will, NASA has just demanded that every one of the proposed astrophysics flagship missions abandon their large ambitions and present a scaled-down, sub-$5 billion version of their proposal. That means smaller telescopes, reduced capabilities, and less knowledge that will be revealed about the Universe. Every single one of the four will suffer from this, but the biggest losers may be us. In terms of science, society, spinoffs, and civilization, we’ll all be poorer if we fail to invest in something that truly makes a difference in this world.

Why grandstand when you can literally grandly stand where no human has stood before: at the frontiers of knowledge? It’s time to invest in something that matters.

Remnants Of Our Solar System’s Formation Found…

Remnants Of Our Solar System’s Formation Found In Our Interplanetary Dust

“Our naive picture of a disk that gets very hot, fragments, and cools to then form planets may be hopelessly oversimplified. Instead, we’ve learned that it may actually be cold, outer material that holds the key to our planetary backyard. If the conclusions of the Ishii et al. paper stand the test of time, we may have just revolutionized our understanding of how all planetary systems come into being.”

How did Earth (and the other planets) form? According to conventional wisdom, a molecular cloud collapsed, formed a protoplanetary disk, funneled material into the center, and gave birth to a star. This star then blew off the gas and light elements from the inner Solar System, with the planets we have today representing the survivors from these hot, early stages. Only, what if that picture weren’t correct after all? What if the material that gave rise to our (and other) worlds wasn’t forged in an inferno, but in a colder, more distant environment that only fell into the inner reaches at a later time?

The way to decide would be to identify and examine material left over from these early stages of Solar System formation in enough detail. For the first time, we’ve done exactly that. Don’t miss the results!

New Stars Turn Galaxies Pink, Even Though Ther…

New Stars Turn Galaxies Pink, Even Though There Are No ‘Pink Stars’

“New star-forming regions produce lots of ultraviolet light, which ionizes atoms by kicking electrons off of their nuclei.

These electrons then find other nuclei, creating neutral atoms again, eventually cascading down through its energy levels.

Hydrogen is the most common element in the Universe, and the strongest visible light-emitting transition is at 656.3 nanometers.

The combination of this red emission line — known as the Balmer alpha (or Hα) line — with white starlight adds up to pink.”

When you look through a telescope’s eyepiece at a distant galaxy, it will always appear white to you. That’s because, on average, starlight is white, and your eyes are more sensitive to white light than any color in particular. But with the advent of a CCD camera, collecting individual photons one-at-a-time, you can more accurately gauge an astronomical object’s natural color. Even though new stars are predominantly blue in color, star-forming regions and galaxies appear pink. The problem compounds itself when you realize there isn’t any such thing as a pink star! And yet, there’s a straightforward physical explanation for what we see.

It’s a combination of ultraviolet radiation, white starlight, and the physics of hydrogen atoms that turn galaxies pink. Find out how, with some incredible  visuals, today!

Sorry, Methane And ‘Organics’ On M…

Sorry, Methane And ‘Organics’ On Mars Are Not Evidence For Life

“In 2020, two next-generation rovers will launch: ESA’s ExoMars and NASA’s Mars 2020. Instead of indirect inferences and possibilities, we’ll actually be able to understand whether the origin of these molecules is geological or biological in nature. It’s important to keep an open mind and let science, rather than our hopes or fears, decide the answer. The evidence is building, and we’re finally gaining a more robust picture of how, exactly, Mars works.

It’s producing methane seasonally, contains loads of carbon-based compounds, and had a very watery past. But does that all add up to life, past or present? In 2018, the evidence doesn’t say “yes” just yet. But in just a few years, we just might have the answer. In a few years, for the first time, we might finally know if there’s life beyond Earth.”

We use the word “organics” a lot when we talk about life (and molecules) beyond Earth. But while that word may conjure up images of reproducing molecules, new cells, and life, the scientific definition is far more mundane: a molecule containing carbon. That means carbon monoxide and cyanide are organic, even though they may be toxic to life itself. The discovery of seasonally-varying methane on Mars is interesting, but it may be better evidence for something geologically compelling than it is for anything biological. Regardless of how you interpret it, one thing is for certain: everything we’ve found on Mars so far is not yet enough to claim evidence for life.

So we’ll continue to look in new and better ways. But until the deciding evidence comes in, be skeptical. Good science demands it.

The 5 Most Important Rules For Scientists Who …

The 5 Most Important Rules For Scientists Who Write About Science

“Remember that your number one goal, if you’re a scientist writing about your science, is to increase the excitement and knowledge of your audience about what it is that you do. What we’re learning about all aspects of the Universe is expanding and increasing every day, and that joy and wonder should carry over to all of us in our daily lives. We cannot be experts in each and every field, but that underscores exactly why we need experts, and to respect true expertise when we encounter it.

If we take care to communicate responsibly, we can all gain a greater awareness of what it is that we do understand, as well as an appreciation for what that knowledge means. We may never run out of questions to ponder about the Universe itself, but with a little care and effort, we can all come a little bit closer to comprehending the answers.”

For most of us, we recognize that our expertise is extremely limited in all but a few areas. In order to learn what’s going on at the cutting edge of human knowledge, we have to go to the experts. In fields like physics, astronomy, biology, and chemistry, that means going to the scientists who study those fields. Yet scientists who communicate their own science often are some of the worst communicators out there, either getting mired in the details and losing the big picture or oversimplifying things to the point where they misinform their audience. Yet, if they just followed these five rules, they could avoid the most common mistakes and do what they set out to: inform the world about what they do and why it matters.

Come get the five most important rules for scientists who write about science. I bet you find value here even if you’re not a scientist yourself!

What’s Happening At Kilauea In Hawaii? 1…

What’s Happening At Kilauea In Hawaii? 16 Questions With A Front-Line USGS Scientist

“I think Hawaii is a unique place on this planet. These volcanoes are well-studied and have a long, historic record. People have lived here over 1,600 years and learned how to live in harmony with active volcanoes, understanding, respecting, and in many cases, revering these wonders of nature. I think this combination of modern scientific monitoring and Hawaiian cultural appreciation for the volcanoes makes for a very supportive atmosphere where residents and scientists alike can come together in mutual admiration for the power of volcanoes. They are creating new land, for example, which is a beautiful think. The hazard can be disastrous, of course, but people need to realize that we can’t stop it. All we can do is get out of the way.”

There’s a lot of fearsome news, and a lot of impressive pictures of destruction, coming out of Hawaii these days. But in truth, this is the most well-studied set of volcanoes in the world, and the scientific response to these events has led to one of the most well-managed natural disasters in human history. Although thousands have been evacuated from their homes, no one has been killed, and injuries have been extraordinarily rare. Only a very small portion of one island has been affected, and most of the dangers facing residents are no different, property damage aside, than the dangers they’ve faced continuously over the past decade.

Why is this? I had the chance to talk with a front-line USGS scientist, Brian Shiro, who’s on site at the Kilauea eruption. Come see the full interview here!

Did Han Solo Use A Trick Of Einstein’s R…

Did Han Solo Use A Trick Of Einstein’s Relativity To Make The Kessel Run?

“To move quickly between two points in space, then, even a straight line might be a disastrous plan. If what you need to do is avoid a large number of potentially hazardous objects, going around might be the only option. This could mean adding a very large distance to your expected path length, perhaps adding many light years to your journey. A straight-line path might be much shorter, but much more dangerous. But the shortest path of all won’t be a straight line, but an intricately curved path through the densest, most dangerous environment of all: a field of stars, planets, black holes, gas, dust, and more. To make the Kessel Run, the Millennium Falcon may have had to go through the center of that legendary galaxy far, far away.”

Was the Kessel Run a legend concocted by Han Solo to try and trick Luke and Obi-Wan? Or was it really a long run, that somehow the Millennium Falcon made in a shorter distance than was ever thought possible? That last possibility is intriguing, because physics allows it to be so. You normally think that the shortest distance between two points is a straight line, but this isn’t so in General Relativity. In truth, a curved path may be shorter, owing to the simple fact that masses are present, and they curve the fabric of spacetime. It’s possible that understanding _the force_ in Star Wars may not be as important, even for a pilot, as understanding the gravitational force in a galaxy far, far away.

Come see how a trick of Einstein’s Relativity might have made the Kessel Run possible!

The USGS Hawaiian Volcano Observatory Is A Tru…

The USGS Hawaiian Volcano Observatory Is A Trusted Source For The Kilauea Eruption

“5.) Maps of what’s happening and where. This is perhaps the greatest resource for determining what’s occurring and where. They show fissures and flows, including present, recent, and past lava flows. They display thermal maps of the fissure system and the lava flows that have occurred, overlaid atop satellite imagery. Occasionally, they have radar images that show how things like the eruptive vent at the summit has changed over the past few weeks. Most importantly, they have updated flow fronts, lava pools, lava channels, and ocean entry points. This way, you can know not only where the lava is at any moment, but where the lava flows are headed, and how that’s changed over time.”

On May 3rd, 2018, new cracks and fissures opened up around Kilauea on the Big Island of Hawaii, creating new flows and channels of lava. The next day, a magnitude 6.9 earthquake occurred: the largest in Hawaii in over 40 years. Since then the Kilauea eruption has intensified to rival its highest levels of the past century, with dangers coming from lava flows, channels, and fountains, vog and noxious gases, and volcanic ash. Despite these incredible dangers, however, there’s little worry that this will become as disastrous or deadly as the legendary 1790 eruption, despite the fact that hundreds of times as many people live on Hawaii now as did back then. Why? The incredible work of the USGS Hawaiian Volcano Observatory in collecting and disseminating information.

Find out all that you can learn, and where, about the latest results and updates on the Kilauea eruption from the most trusted source in the game.

The EmDrive, NASA’s ‘Impossible&rs…

The EmDrive, NASA’s ‘Impossible’ Space Engine, Really Is Impossible

“Tajmar’s results are exactly what you’d expect for the systematic error explanation: with a properly shielded apparatus, with no additional electromagnetic fields induced by the wires, there is no observed thrust at any power. They conclude that these induced fields by the electrical wires, visibly present in the other setups, are the likely culprit for the observed, unexplained thrust:

‘Our results show that the magnetic interaction from not sufficiently shielded cables or thrusters are a major factor that needs to be taken into account for proper µN thrust measurements for these type of devices.’

To the best of our knowledge, then, rockets will still require propellant.

The EmDrive isn’t a reactionless drive at all, and all the laws of physics should still work. In short, we fooled ourselves.”

For years, many tinkerers and inventors have been claiming that some sort of electromagnetic cavity, e.g., the EmDrive, can create a reactionless drive. That is, they claim they can change the momentum of a rocket without any sort of change-in-momentum of anything else, violating Newton’s action-reaction law. Needless to say, much like perpetual motion, physicists are largely skeptical. But until now, we hadn’t yet found why they were achieving the results that they did. However, a new source of error was just uncovered: magnetic fields originating from the cables that power the device. Properly set up the device, away from cables and loops of wires, as Martin Tajmar’s team did, and guess what: your ‘anomalous thrust’ disappears.

The EmDrive, billed as NASA’s impossible space engine, really was too good to be true.

Aliens In The Multiverse? Here’s Why Dar…

Aliens In The Multiverse? Here’s Why Dark Energy Doesn’t Tell You Anything

“It’s important to recognize that there are a wide variety of possible values that dark energy could have, including significantly larger values, that would still lead to a Universe very much like our own. Until we understand where these values come from, and what makes one set of values more likely than another, it’s grossly unfair to claim that we won the cosmic lottery in having a Universe with the values ours possesses. Unless you know the rules that govern the game you’re playing, you have no idea how likely or unlikely the one result you see actually was.”

There are a series of interesting results that have just emerged from the EAGLE collaboration, which has been simulating the Universe to learn what types of stars and galaxies form within it. They varied the value of dark energy in it tremendously, and found that even if you increased the amount by five, ten, or fifty times as much, you’d still form plenty of stars and galaxies: enough to give you chances at life like we have here. This surprised them, since they assumed the value of dark energy we have is finely-tuned to allow life. But it appears that things may not be as finely-tuned as we had thought! The simulation results are interesting, but this doesn’t really tell you anything about aliens in the Multiverse, since we have no idea what causes dark energy to have the values that it does.

Until we know the rules that govern this, we can’t really say what dark energy tells us about aliens in Universes other than our own. Here’s why.