Category: science

Could All Our Scientific Knowledge Come Tumbli…

Could All Our Scientific Knowledge Come Tumbling Down Like A House Of Cards?

“Now, think about what would be required to do today to tear down one of our leading scientific theories. It’s not as complicated as you might imagine: all it would take is a single observation of any phenomenon that contradicted the Big Bang’s predictions. Within the context of General Relativity, if you could find a theoretical consequence of the Big Bang that didn’t match up with our observations, we’d truly be in store for a revolution.

But here’s the important part: that won’t mean that everything about the Big Bang is wrong. General Relativity didn’t mean everything about Newtonian gravity was wrong; it simply exposed the limit of where and how Newtonian gravity was successful. It will still be accurate to describe the Universe as having originated from a hot, dense, expanding state; it will still be accurate to describe our observable Universe as being many billions of years old (but not infinite in age); it will still be accurate to talk about the first stars and galaxies, the first neutral atoms, and the first stable atomic nuclei.”

There are a great many people out there who absolutely cannot wait for the day where one of our greatest scientific theories is demonstrated to be wrong. Where an experiment or observation comes in that cannot be reconciled with our leading ideas of how the Universe works. At last, perhaps an unintuitive part of our existence, like relativity or quantum mechanics, might be replaced with something that’s a closer approximation of our actual reality. But that won’t invalidate what we already know; it will merely extend it. 

Scientific revolutions aren’t what most people think, but they are going to come, eventually. Here’s what the revolution will actually look like.

10 Deep Lessons From Our First Image Of A Blac…

10 Deep Lessons From Our First Image Of A Black Hole’s Event Horizon

6. Black holes are dynamic entities, and the radiation emitted from them changes over time. With a reconstructed mass of 6.5 billion solar masses, it takes roughly a day for light to travel across the black hole’s event horizon. This roughly sets the timescale over which we expect to see features change and fluctuate in the radiation observed by the Event Horizon Telescope.

Even with observations that span only a few days, we’ve confirmed that the structure of the emitted radiation changes over time, as predicted. The 2017 data contains four nights of observations. Even glancing at these four images, you can visually see how the first two dates have similar features, and the latter two dates have similar features, but there are definitive changes that are visible — and variable — between the early and late image sets. In other words, the features of the radiation from around M87’s black hole really are changing over time.”

I’ve heard some grumbling over the past day that people are unimpressed with the Event Horizon Telescope collaboration’s big reveal. Maybe the image doesn’t look pretty enough for some people; maybe it doesn’t have the sharpness or level of detail that people are used to from observatories like Hubble.

Well, may I please introduce you to science? If you knew what we’ve actually learned by taking this image, you might change your tune. Read this, and see if you’re not impressed now!

cosmicvastness: Astronomers Capture First I…

cosmicvastness:

Astronomers Capture First Image of a Black Hole

The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. Today, in coordinated press conferences across the globe, EHT researchers revealed that they have succeeded, unveiling the first direct visual evidence of a supermassive black hole and its shadow.

The image reveals the black hole at the centre of Messier 87, a massive galaxy in the nearby Virgo galaxy cluster. This black hole resides 55 million light-years from Earth and has a mass 6.5 billion times that of the Sun.

Supermassive black holes are relatively tiny astronomical objects — which has made them impossible to directly observe until now. As the size of a black hole’s event horizon is proportional to its mass, the more massive a black hole, the larger the shadow. Thanks to its enormous mass and relative proximity, M87’s black hole was predicted to be one of the largest viewable from Earth — making it a perfect target for the EHT. 

The shadow of a black hole is the closest we can come to an image of the black hole itself, a completely dark object from which light cannot escape. The black hole’s boundary — the event horizon from which the EHT takes its name — is around 2.5 times smaller than the shadow it casts and measures just under 40 billion km across.

Credit: ESO

I’m just mindblown.

humanoidhistory: The rings of Saturn, observe…

humanoidhistory:

The rings of Saturn, observed by the Cassini space probe on May 3, 2005.

(NASA)

Ask Ethan: What Is An Electron?

Ask Ethan: What Is An Electron?

“Please will you describe the electron… explaining what it is, and why it moves the way it does when it interacts with a positron. If you’d also like to explain why it moves the way that it does in an electric field, a magnetic field, and a gravitational field, that would be nice. An explanation of charge would be nice too, and an explanation of why the electron has mass.”

When we, as physicists, speak about fundamental particles, we refer to the smallest constituents of matter and energy that cannot be divided any farther. There are two classes of such particles, fermions (which can be matter or antimatter) and bosons (which are neither), and they behave in rather unintuitive ways, since they’re quantum in nature. But even though there are many properties of quantum particles that are inherently uncertain, there are some that are intrinsic and perfectly well-known. These are the properties that define each type of particle and allow us to discern them from all others.

Here is, to the best of our knowledge, what the electron truly is, along with some fundamental questions we still have yet to answer about them!

Ask Ethan: Why Haven’t We Found Gravitat…

Ask Ethan: Why Haven’t We Found Gravitational Waves In Our Own Galaxy?

“Why are all the known gravitational wave sources (coalescing binaries) in the distant universe? Why none has been detected in our neighborhood? […] My guess (which is most probably wrong) is that the detectors need to be precisely aligned for any detection. Hence all the detection until now are serendipitous.”

On September 14, 2015, our view of the Universe changed forever with the first direct detection of gravitational waves. Since then, we’ve detected a variety of black hole and neutron star binaries in the final, end-stages of coalescence, culminating in a spectacular merger. But they’re all hundreds of millions or even billions of light-years away!

Simultaneously, we know that we have neutron stars and black holes in binary systems here in our own galaxy. But of all the gravitational waves that LIGO and Virgo have detected, none of these objects are among them. This remains true, even though we can identify many of them from their electromagnetic signatures.

Why haven’t we found gravitational waves in our own galaxy? Give us a better observatory and we will! Here’s the full scientific story on that.

Regular

This Is Why The Multiverse Must Exist “This p…

This Is Why The Multiverse Must Exist

“This picture, of huge Universes, far bigger than the meager part that’s observable to us, constantly being created across this exponentially inflating space, is what the Multiverse is all about. It’s not a new, testable scientific prediction, but rather a theoretical consequence that’s unavoidable, based on the laws of physics as they’re understood today. Whether the laws of physics are identical to our own in those other Universes is unknown.

If you have an inflationary Universe that’s governed by quantum physics, a Multiverse is unavoidable. As always, we are collecting as much new, compelling evidence as we can on a continuous basis to better understand the entire cosmos. It may turn out that inflation is wrong, that quantum physics is wrong, or that applying these rules the way we do has some fundamental flaw. But so far, everything adds up. Unless we’ve got something wrong, the Multiverse is inevitable, and the Universe we inhabit is just a minuscule part of it.”

Skeptical about the Multiverse? You’re not alone. After all, how can you be confident that something must exist if the experimental, measurable, or observational evidence that’s required to validate its existence isn’t located within our observable Universe? It’s a reasonable thought, but there are ways to know something that go beyond verifying the exact phenomenon we’re looking for. This is why theoretical physics is so powerful: it not only allows you to draw conclusions about things you have not yet observed, but about things you cannot observe at all.

Come find out how, and learn why the Multiverse really must exist.

Could The Milky Way Be More Massive Than Andro…

Could The Milky Way Be More Massive Than Andromeda?

“The Milky Way is home to the Sun, our Solar System, and hundreds of billions of stars beyond that. Yet unlike all the other galaxies out there — in our Local Group and in the Universe beyond — we have no good way to view our own galaxy from our position within it. As a result, the full extent of our galaxy, including its total size, mass, matter content, and number of stars, remains mysterious to modern astronomers.

We’ve long looked at the galaxies surrounding our local neighborhood in space and compared ourselves to them. Although there may be more than 60 galaxies present within the Local Group, two of them dominate in every way imaginable: ourselves and Andromeda. We are the two largest, most massive galaxies around, with more stars than all the others combined. But which one is bigger? Long thought to be Andromeda, we’re now finding out the Milky Way might have a chance at being number one.”

It’s 2019, and we still don’t know how massive the Milky Way is, or even whether we’re the most massive galaxy in the Local Group or not. It’s a lot like measuring your eye color: looking out at everyone else, it’s easy to see what color their eyes are. But if you didn’t have a reflection, photograph, or the observations of others, how would you know your own eye color? Well, being trapped within the Milky Way makes measurements notoriously difficult, and we’re only now figuring out how to overcome that obstacle.

It’s not only possible, but even likely that the Milky Way, despite having fewer stars occupying less volume than Andromeda’s, is the most massive galaxy in the Local Group. Come get the full story.

The Anthropic Principle Is What Scientists Use…

The Anthropic Principle Is What Scientists Use When They’ve Given Up On Science

“There can be no doubt that the Universe is governed by laws, constants, and observable properties, and that this very same Universe did, in fact, give rise to us. But that does not necessitate the Universe was required to have the exact properties it does in order to admit our existence, nor does it imply that a Universe that were different in some fundamental way would be an impossibility for observers. Most importantly, we cannot use the Anthropic Principle to learn why the Universe is the way we see it, as opposed to any other way.

The Anthropic Principle may be a remarkable starting point, allowing us to place constraints on the Universe’s properties owing to the fact of our existence, but that is not a scientific solution in and of itself. Our goal in science, remember, is to understand how the Universe arrived at its current properties through natural processes. If we replace scientific inquiry with anthropic arguments, we’ll never get there. The multiverse may be real, but the Anthropic Principle cannot scientifically explain why our Universe’s properties are what they are.”

It shouldn’t be a controversial statement to note the fact that we exist in the Universe, and that therefore the laws of physics and the phenomena in the Universe need to behave in a way that makes our existence possible. But sometimes, what starts off as a correct and innocuous statement gets applied in an extremely unscientific way, and that leads to a number of not-necessarily-correct conclusions being drawn by scientists who are unknowingly fooling themselves.

Don’t you get fooled; learn the difference between a good use and a real abuse of the Anthropic Principle. Otherwise, you might accidentally give up on science.