Category: starlight

We Just Measured All The Starlight In The Universe, And It Spells Doom For Our Future

“An enormous part of our cosmic history has just been revealed for the very first time. We can bypass the foregrounds of our own Solar System, thanks to these gamma-ray signals and how they interact with the extragalactic background of starlight, to understand and measure how star-formation has occurred over all of cosmic time in our Universe, and to infer the total amount of starlight ever produced.

In the future, scientists may be able to go back even farther, and probe how stars formed and emitted light back before the Fermi-LAT team’s instrumentation is capable of reaching. Star formation is what turns the primordial elements from the Big Bang into the elements capable of giving rise to rocky planets, organic molecules, and life in the Universe. Perhaps, one day, we’ll find a way to reach all the way back to the earliest moments of our Universe, uncovering the truths behind the greatest cosmic mysteries of all. Until then, enjoy each and every step — like this one — that we take along the journey!”

For the first time ever, we’ve measured the total amount of starlight ever produced throughout the history of the Universe. We know how many photons, created by stars, now permeate all of space. We know when star-formation peaked, and we know how it’s fallen over time, and how it continues to fall.

Thanks to a new result from the Fermi-LAT collaboration, we understand how star-formation worked, and is dying, across all of space and time. Get the full story today!

What Was It Like When Starlight First Broke Through The Universe’s Neutral Atoms?

“The light created in the earliest era of stars and galaxies all plays a role. The ultraviolet light works to ionize the matter around it, enabling visible light to progressively farther and farther as the ionization fraction increases. The visible light gets scattered in all directions until reionization has gotten far enough to enable our best telescopes today to see it. But the infrared light, also created by the stars, passes through even the neutral matter, giving our 2020s-era telescopes a chance to find them.

When starlight breaks through the sea of neutral atoms, even before reionization completes, it gives us a chance to detect the earliest objects we’ll ever have seen. When the James Webb Space Telescope launches, that will be the first thing we look for. The most distant reaches of the Universe are within our view. We just have to look and find out what’s truly out there.”

Something existing in our Universe is not quite the same as something being detectable in our Universe. We know that, at some point in our past, we created the first generation of stars, the second generation of stars, and the very first galaxies to exist in our Universe. But in order to detect them, there has to be some way for that light to travel through the Universe to our observatories and telescopes monitoring the skies today. There’s an obstacle standing in the way of that, though: the neutral atoms formed just hundreds of thousands of years after the Big Bang. When the first hints of starlight begin permeating through space, they encounter these neutral atoms, which largely thwarts them. It takes hundreds of millions of years for starlight to win.

But with enough persistence and star-formation, the light will eventually break through. Come get the cosmic story of how this all actually happens!