Category: supermassive

How Did This Black Hole Get So Big So Fast?

How Did This Black Hole Get So Big So Fast?

“Recently, a new black hole, J1342+0928, was discovered to originate from 13.1 billion years ago: when the Universe was 690 million years old, just 5% of its current age. It has a mass of 800 million Suns, an exceedingly high figure for such early times. Even if black holes formed from the very first stars, they’d have to accrete matter and grow at the maximum rate possible — the Eddington limit — to reach this size so rapidly. Fortunately, other methods may also grow a supermassive black hole.”

One of the puzzles of how our Universe grew up is how the supermassive black holes we find at the centers of galaxies got so big so fast. We’ve got multiple black holes that come from when the Universe was less than 10% of its current age that are already many hundreds of millions, if not billions, of solar masses in size. How did they get so big so fast? While many hypothesize exotic scenarios like our Universe being born with (primordial) black holes, there is no evidence for such an extraordinary leap. Could conventional astrophysics, and the realistic conditions of our early Universe, actually lead to black holes so massive so early on?

The answer is very likely yes. Come see an extremely favored scenario, with nothing more than conventional astrophysics, that just might get us there.

This Is Why The Event Horizon Telescope Still …

This Is Why The Event Horizon Telescope Still Doesn’t Have An Image Of A Black Hole

“Of all the black holes visible from Earth, the largest is at the galactic center: 37 μas.

With a theoretical resolution of 15 μas, the EHT should resolve it.

Despite the incredible news that they’ve detected the black hole’s structure at the galactic center, however, there’s still no direct image.”

Last year, data from the South Pole Telescope, a 10-meter radio telescope located at the South Pole, was added to the Event Horizon Telescope team’s overall set of information. Here we are, though, half a year later, and we still don’t have a direct image of the event horizon for the galactic center’s black hole. There aren’t any problems; the issue is that we have to successfully calibrate and error-correct the data, and that takes time and care to get it right. Science isn’t about getting the answer in the time you have to get it; it’s about getting the right answer in the time it takes to get things right. From that point of view, there’s every reason this is worth waiting for.

The Event Horizon Telescope team is on the right track; here’s where we are right now in our quest to create the first image of a black hole’s event horizon!

How Do The Most Massive Stars Die: Supernova, …

How Do The Most Massive Stars Die: Supernova, Hypernova, Or Direct Collapse?

“When we see a very massive star, it’s tempting to assume it will go supernova, and a black hole or neutron star will remain. But in reality, there are two other possible outcomes that have been observed, and happen quite often on a cosmic scale. Scientists are still working to understand when each of these events occurs and under what conditions, but they all happen. The next time you look at a star that’s many times the size and mass of our Sun, don’t think “supernova” as a foregone conclusion. There’s a lot of life left in these objects, and a lot of possibilities for their demise, too. We know our observable Universe started with a bang. For the most massive stars, we still aren’t certain whether they end with the ultimate bang, destroying themselves entirely, or the ultimate whimper, collapsing entirely into a gravitational abyss of nothingness.”

How do stars die? If you’re low in mass, you’ll burn through all your fuel and just contract down. If you’re mid-ranged, like our Sun, you’ll become a giant, blow off your outer layers, and then the remaining core will contract to a white dwarf. And the high-mass stars can take an even more spectacular path: going supernova to produce either a neutron star or a black hole at their core. But that’s not all a high-mass star can do. We’ve seen supernova impostors, hypernovae that are even more luminous than the brightest supernova, and direct collapse black holes, where no explosion or even ejecta exists from a star that used to be present and massive. The science behind them in incredible, and while there are still uncertainties in predicting a star’s fate, we’re learning more all the time.

Come get the fascinating physics behind how the most massive stars die. You might think “supernova” every time, but the Universe is far more intricate and complex than that!

The Milky Way Is Hiding Tens Of Thousands Of B…

The Milky Way Is Hiding Tens Of Thousands Of Black Holes

“This study is of tremendous importance, since it provides us with the first real evidence of what LISA will be looking for, further motivating us to look for these events that, as we now know, must exist. Unlike LIGO’s black holes, these inspiraling events will give us weeks, months, or even years of lead-up time, allowing us to pinpoint exactly where and when we’ll need to look to see these mergers coming. This is the first confirmation of the theory that tens of thousands of black holes ought to exist around supermassive ones at the centers of galaxies, and allows us to better predict how many gravitational wave events we’re likely to see coming from them.“

At the center of our Milky Way, our galaxy houses a supermassive black hole: Sagittarius A*. At four million solar masses, it’s the most massive object in our entire galaxy, while orbiting around it are stars, gas, dust, and many other astrophysical objects. This is a region where new star formation is rampant, and so, in theory, there ought to be many thousands of black holes within just a few light years of Sagittarius A*, some of which ought to be detectable through their emission of X-rays from binary companions. For nearly 20 years, such a detection was elusive, since the flares that occur when black holes absorb large amounts of matter are too rare. But now, using the full suite of archival data from the Chandra X-ray observatory, scientists have found the steady, low-level X-ray emission these systems give off, revealing a population of approximately 10,000 black holes within 3 light years of Sagittarius A*.

The Milky Way is hiding tens of thousands of black holes near the galactic center, and for the first time, we’ve just revealed the surefire signs that they exist.

The Youngest, Most Massive Black Hole Is A Puz…

The Youngest, Most Massive Black Hole Is A Puzzle For Astronomy

“Recently, a new black hole, J1342+0928, was discovered to originate from 13.1 billion years ago: when the Universe was 690 million years old, just 5% of its current age.

It has a mass of 800 million Suns, an exceedingly high figure for such early times.

Even if this black hole formed from the very first stars, it would have to accrete matter and grow at the maximum rate possible — the Eddington limit — to reach this size so rapidly.

Fortunately, there are other ways to grow a supermassive black hole.”

We did it! We found our most massive, most distant quasar of all-time, telling us we’ve got a supermassive black hole that’s 800 million times as massive as our Sun when the Universe was just 5% of its current age. Even factoring in all we know about the formation and growth of black holes, from the early Universe and throughout all of time, we expect that there will only be around 20 black holes this large existing this early. Are there going to be more? Will we have to revise our current theories of cosmology and structure formation? Or is this simply an indication that we’re beginning to discover the brightest, most massive objects that are out there at any distance at all? As always, more and better data will decide, but here’s what we know so far. 

Come get the full story, and some spectacular visuals (and video!) on today’s Mostly Mute Monday.

Universe’s Largest Black Hole May Have An Explanation At…

Universe’s Largest Black Hole May Have An Explanation At Last

“The brightest, most luminous objects in the entire Universe are neither stars nor galaxies, but quasars, like S5 0014+81. The sixth brightest quasar known so far, its mass was determined in a 2009 study: 40 billion Suns. Its physical size would have a radius that’s 800 times the Earth-Sun distance, or over 100 billion kilometers. This makes it the most massive black hole known in the entire Universe, as massive as the Triangulum galaxy, our local group’s third largest member.”

The largest black hole in the Universe was a shocker when it was first discovered. At 40 billion solar masses, it certainly is impressively large. Like other quasars and active galaxies, it has a luminous accretion disk that can be seen from a great distance. Like only a few, one of its two incredibly energetic, polar jets is pointed directly at Earth, creating a blazar, the brightest of all active galaxies. But what makes this object, known as S5 0014+81, so special is that it got so big and massive so quickly. Its light comes to us from a time when the Universe was only 1.6 billion years old: just 12% of its current age. If this brilliant, massive object were located a mere 280 light years away, or ‘only’ 18 million times the Earth-Sun distance, it would shine as brightly as our life-giving star.

Come learn about the largest ultramassive black hole known in the Universe, what explains its existence, and how there might be an even more massive one out there for Mostly Mute Monday!