Category: universe

What Was It Like When We First Made Protons An…

What Was It Like When We First Made Protons And Neutrons?

“But at this stage, the biggest new thing that occurs is that particles are no longer individual-and-free on all scales. Instead, for the first time, the Universe has created a stable, bound state of multiple particles. A proton is two up and one down quark, bound by gluons, while a neutron is one up and two down quarks, bound by gluons. Only because we created more matter than antimatter do we have a Universe that has protons and neutrons left over; only because the Higgs gave rest mass to the fundamental particles do we get these bound, atomic nuclei.

Owing to the nature of the strong force, and the tremendous binding energy that occurs in these stretched-spring-like interactions between the quarks, the masses of the proton and neutron are some 100 times heavier than the quarks that make them up. The Higgs gave mass to the Universe, but confinement is what gives us 99% of our mass. Without protons and neutrons, our Universe would never be the same.”

The very early Universe looks nothing like our Universe today. Not only are there no stars or galaxies, but there weren’t any atoms or atomic nuclei. If we go back early enough, there weren’t even protons or neutrons, but free quarks (and antiquarks) instead. This era lasted for just 10-to-20 microseconds in the early Universe, but the story of how we went from a quark-gluon plasma to a Universe filled with protons and neutrons is a fascinating true part of our shared cosmic history.

Here’s what the Universe was like when we first made protons and neutrons, along with a list of all the things we needed to line up to lead to the Universe we recognize today!

How The Planck Satellite Forever Changed Our V…

How The Planck Satellite Forever Changed Our View Of The Universe

“Most importantly, a spectacular agreement to a never-before-achieved precision now exists between the CMB we observe and the theoretical predictions of a Universe with 5% normal matter, 27% dark matter, and 68% dark energy. There might be wiggle room of 1-2% in some of those numbers, but a Universe without dark matter and dark energy, both, in great abundance, is a no-go in the face of these observations. They’re real, they’re necessary, and their predictions match the full suite of data perfectly.

Inflation, neutrino physics, and the Big Bang have additional pieces confirming them, while alternatives and specific variants are better constrained. Most definitively, the Planck collaboration states, “We find no compelling evidence for extensions to the base-ΛCDM model.” At last, we can state, with extraordinary confidence, what the Universe is made of.”

For centuries, the question of what the Universe was made of was one of the most unknowable wonders of existence. This week, the Planck collaboration, whose team made the most accurate, precision measurements of the Big Bang’s leftover glow, released their final results, providing unprecedented answers to that question. We now know what the Universe is made of, how old it is, how fast it’s expanding, and a whole suite of other information about it, better than we’ve ever known before. The Planck satellite has revolutionized our view of the Universe, and we’re unlikely to ever do better using this line of inquiry.

How has our view of the Universe changed as a result of Planck? Come find out today!

What Was It Like When The Universe First Creat…

What Was It Like When The Universe First Created More Matter Than Antimatter?

“This is only one of three known, viable scenarios that could lead to the matter-rich Universe we inhabit today, with the other two involving new neutrino physics or new physics at the electroweak scale, respectively. Yet in all cases, it’s the out-of-equilibrium nature of the early Universe, which creates everything allowable at high energies and then cools to an unstable state, which enables the creation of more matter than antimatter. We can start with a completely symmetric Universe in an extremely hot state, and just by cooling and expanding, wind up with one that becomes matter-dominated. The Universe didn’t need to be born with an excess of matter over antimatter; the Big Bang can spontaneously make one from nothing. The only open question, exactly, is how.”

One of the biggest unsolved questions in physics today is how the Universe came to be filled with matter and not antimatter. After all, the laws of physics are completely matter-antimatter symmetric, and yet when we look at what we have today, every planet, star, and galaxy is made of matter and not antimatter. How did it come to be this way? The young, hot, but rapidly expanding-and-cooling Universe gives us all the ingredients we need for this to occur. We are certain of the exact mechanism, but theoretically, there are some enticing possibilities. Here’s a walk through one of those scenarios in great detail, but expressed so simply that even someone with no physics knowledge can follow it.

Here’s what the Universe was like when it was matter-antimatter symmetric, along with how it could have become matter-rich without breaking the laws of physics.

What Is (And Isn’t) Scientific About The…

What Is (And Isn’t) Scientific About The Multiverse

“In this physical Universe, it’s important to observe all that we can, and to measure every bit of knowledge we can glean. Only from the full suite of data available can we hope to ever draw valid, scientific conclusions about the nature of our Universe. Some of those conclusions will have implications that we may not be able to measure: the existence of the multiverse arises from that. But when people then contend that they can draw conclusions about fundamental constants, the laws of physics, or the values of string vacua, they’re no longer doing science; they’re speculating. Wishful thinking is no substitute for data, experiments, or observables. Until we have those, be aware that the multiverse is a consequence of the best science we have available today, but it doesn’t make any scientific predictions we can put to the test.”

The multiverse is one of the most controversial topics in science today. On the one hand, it’s a remarkable story: perhaps our Universe, even beyond what we can observe, isn’t the only one out there. Perhaps there are many others, all generated in some early, pre-Big-Bang state, all disconnected from one another. This isn’t speculation; this part of it arises by combining the two well-established theories of cosmic inflation and quantum physics. Yet if we start trying to go further, such as making statements about the laws of physics, the values of fundamental constants, or the suitability of our Universe for life, we’ve lept out of the realm of science and into wild speculation or, worse, wishful thinking.

Come find out what is (and isn’t) scientific about the multiverse, and add a little bit of nuance to something you likely already have strong opinions on!

Ask Ethan: How Large Is The Entire, Unobservab…

Ask Ethan: How Large Is The Entire, Unobservable Universe?

“We know the size of the Observable Universe since we know the age of the Universe (at least since the phase change) and we know that light radiates. […] My question is, I guess, why doesn’t the math involved in making the CMB and other predictions, in effect, tell us the size of the Universe? We know how hot it was and how cool it is now. Does scale not affect these calculations?”

Our Universe today, to the best of our knowledge, has endured for 13.8 billion years since the Big Bang. But we can see farther than 13.8 billion light years, all because the Universe is expanding. Based the matter and energy present within it, we can determine that the observable Universe is 46.1 billion light years in radius from our perspective, a phenomenal accomplishment of modern science. But what about the unobservable part? What about the parts of the Universe that go beyond where we can see? Can we say anything sensible about how large that is?

We can, but only if we make certain assumptions. Come find out what we know (and think) past the limits of what we can see on this week’s Ask Ethan!

What Was It Like When The Universe Was At Its …

What Was It Like When The Universe Was At Its Hottest?

“At the inception of the hot Big Bang, the Universe reaches its hottest, densest state, and is filled with matter, antimatter, and radiation. The imperfections in the Universe — nearly perfectly uniform but with inhomogeneities of 1-part-in-30,000 — tell us how hot it could have gotten, and also provide the seeds from which the large-scale structure of the Universe will grow. Immediately, the Universe begins expanding and cooling, becoming less hot and less dense, and making it more difficult to create anything requiring a large or energy: E = mc2 means that creating a massive particle requires at least enough energy.

Over time, the expanding and cooling Universe will drive an enormous number of changes. But for one brief moment, everything was symmetric, and as energetic as possible. Somehow, over time, these initial conditions created the entire Universe.”

As soon as the Universe was filled with matter, antimatter, and radiation in the hot, dense state known as the Big Bang, it begins to expand and cool. For one brief moment, the Universe reached its maximum temperature and density, and had enough energy to spontaneously create anything at all that Einstein’s energy-mass equivalence would allow. But this state not only wouldn’t last, but it also was never arbitrarily or infinitely hot! There’s a limit to how energetic the Universe could have ever been, and we’ve determined it’s at least 1000 times smaller than the Planck scale. This is still trillions of times more energetic than anything the LHC ever created.

What was it like when the Universe was the hottest its ever been? Come find out on What-Was-It-Like-Whensday! (See what I did there?)

Why Cosmology’s Expanding Universe Contr…

Why Cosmology’s Expanding Universe Controversy Is An Even Bigger Problem Than You Realize

“The question of how quickly the Universe is expanding is one that has troubled astronomers and astrophysicists since we first realized that cosmic expansion was a necessity. While it’s incredibly impressive that two completely independent methods yield answers that are close to within less than 10%, the fact that they don’t agree with each other is troubling.

If the distance ladder group is in error, and the expansion rate is truly on the low end and near 67 km/s/Mpc, the Universe could fall into line. But if the cosmic microwave background group is mistaken, and the expansion rate is closer to 73 km/s/Mpc, we just may have a crisis in modern cosmology.

The Universe cannot have the dark matter density and initial fluctuations that such a value would imply. Until this puzzle is resolved, we must be open to the possibility that a cosmic revolution may be on the horizon.”

Ever since we first learned that the Universe was expanding, scientists have worked hard to measure just how fast that expansion rate is. From that, combined with what makes up the Universe, we can learn how old the Universe is and what it was like in the past, as well as what it’s fate will be in the future. Yet the two groups that make independent measurements of that rate, from the cosmic microwave background and the cosmic distance ladder, have gotten inconsistent results. If the distance ladder team has made a mistake, everything will be fine with cosmology. But if that team is right and the microwave background team is wrong, there should be a crisis coming.

Why is that? Come find out why the biggest controversy in modern cosmology might be an even bigger problem than almost everyone realizes!

The Counterintuitive Reason Why Dark Energy Ma…

The Counterintuitive Reason Why Dark Energy Makes The Universe Accelerate

“In a nutshell, a new form of energy can affect the Universe’s expansion rate in a new way. It all depends on how the energy density changes over time. While matter and radiation get less dense as the Universe expands, space is still space, and still has the same energy density everywhere. The only thing that’s changed is our automatic assumption that we made: that energy ought to be zero. Well, the accelerating Universe tells us it isn’t zero. The big challenge facing astrophysicists now is to figure out why it has the value that it does. On that front, dark energy is still the biggest mystery in the Universe.”

There are lots of explanations out there for why the Universe’s expansion is accelerating. Some people point towards the negative pressure of a cosmological constant and talk about how this causes space to fly apart. Others call it a “fifth force” and imply that it’s a new fundamental relation that functions as some sort of anti-gravity. Neither of those explanations are correct, though, and they both complicate a much simpler (and more correct!) truth: that the Universe’s expansion rate is simply determined by all the different types of matter and energy within it. Dark energy is just another type of energy, but it’s different in a very particular way from the normal matter, dark matter, neutrinos, and radiation that we know.

Dark energy makes the Universe accelerate because of how it evolves and changes differently from everything else we know of over time. Come find out how!

Aliens In The Multiverse? Here’s Why Dar…

Aliens In The Multiverse? Here’s Why Dark Energy Doesn’t Tell You Anything

“It’s important to recognize that there are a wide variety of possible values that dark energy could have, including significantly larger values, that would still lead to a Universe very much like our own. Until we understand where these values come from, and what makes one set of values more likely than another, it’s grossly unfair to claim that we won the cosmic lottery in having a Universe with the values ours possesses. Unless you know the rules that govern the game you’re playing, you have no idea how likely or unlikely the one result you see actually was.”

There are a series of interesting results that have just emerged from the EAGLE collaboration, which has been simulating the Universe to learn what types of stars and galaxies form within it. They varied the value of dark energy in it tremendously, and found that even if you increased the amount by five, ten, or fifty times as much, you’d still form plenty of stars and galaxies: enough to give you chances at life like we have here. This surprised them, since they assumed the value of dark energy we have is finely-tuned to allow life. But it appears that things may not be as finely-tuned as we had thought! The simulation results are interesting, but this doesn’t really tell you anything about aliens in the Multiverse, since we have no idea what causes dark energy to have the values that it does.

Until we know the rules that govern this, we can’t really say what dark energy tells us about aliens in Universes other than our own. Here’s why.

Ask Ethan: How Many Galaxies Have Already Disa…

Ask Ethan: How Many Galaxies Have Already Disappeared From Our Perspective?

“So how many earth observable galaxies have dropped out of sight? That is, how many galaxies (with the highest redshift) have disappeared from our point of view?”

When we look out at the distant reaches of space, there are some 2 trillion galaxies observable within our Universe. But our Universe is expanding, the expansion is accelerating, and light can only travel at the speed of light. Does that mean that galaxies are dropping out of sight?

There are two ways to look at this: from the point of view of not being able to see galaxies that we can presently see, and from the point of view of whether we can see the light those galaxies are emitting today, 13.8 billion years after the Big Bang? If we take the first definition, not only is the answer “zero,” but there will be trillions more galaxies revealed to us over time. But if we take the second, we find that most of the galaxies we can see today are already gone.

How many galaxies have already disappeared from our perspective? The cosmic implications should motivate us to get out there and explore while there’s still some good Universe left to go and see!